
MASALAH, RUANG KEADAAN

PENDAHULUAN

➤ Sistem yang menggunakna kecerdasan buatan mencoba untuk memberikan output berupa solusi dari suatu masalah berdasarkan kumpulan pengetahuan yang ada.

- ➤ Input yang diberikan pada sistem yang menggunakan kecerdasan buatan berupa masalah.
- > Sistem harus dilengkapi dengan sekumpulan pengetahuan yang ada pada basis pengetahuan
- ➤ Sistem harus memiliki *inference engine* agar mampu mengambil kesimpulan berdasarkan fakta atau pengetahuan.
- ➤ Output yang diberikan berupa solusi masalah sebagai hasil dari inferensi

Secara umum, untuk membangun suatu sistem yang mampu menyelesaikan masalah perlu dipertimbangkan 4 hal, yaitu:

- 1. Mendefinisikan masalah dengan tepat ; pendefinisian ini mencakup spesifikasi yang tepat mengenai keadaan awal dan solusi yang diharapkan
- 2. Menganalisis masalah tersebut serta mencari beberapa teknik penyelesaian masalah yang sesuai
- 3. Merepresentasikan pengetahuan yang perlu untuk menyelesaikan masalah tersebut
- 4. Memilih teknik penyelesaian masalah yang terbaik

MENDEFINISIKAN MASALAH SEBAGAI SUATU RUANG KEADAAN

Misalnya, dalam permainan catur, maka yang harus ditentukan;

- 1. Posisi awal pada papan catur ; posisi awal permainan catur semua bidak diletakkan di atas papan catur dalam 2 sisi, yaitu kubu putih dan kubu hitam
- 2. Aturan-aturan untuk melakukan gerakan secara legal; menentukan gerakan suatu bidak, melangkah dari suatu keadaan ke keadaan lain. untuk mempermudah menunjukkan posisi bidak, setiap kotak ditunjukkan dalam huruf pada arah horizontal, dan angka pada arah vertikal.
- 3. Tujuan (*goal*) ; posisi pada papan catur yang menunjukkan kemenangan seseorang terhadap lawannya. Kemenangan ini ditandai dengan posisi raja yang sudah tidak dapat bergerak lagi.

- > Permasalahan Petani, Seekor Angsa, Seekor Srigala, dan Padi
- ➤ Memindahkan seluruhnya menyebrangi sungai
- > Perahu terbatas, Petani hanya dapat membawa 1 objek
- > Serigala akan memangsa Angsa, Angsa akan memakan padi
- ➤ Mendefinisikan masalah sebagai ruang keadaan, langkahnya adalah :

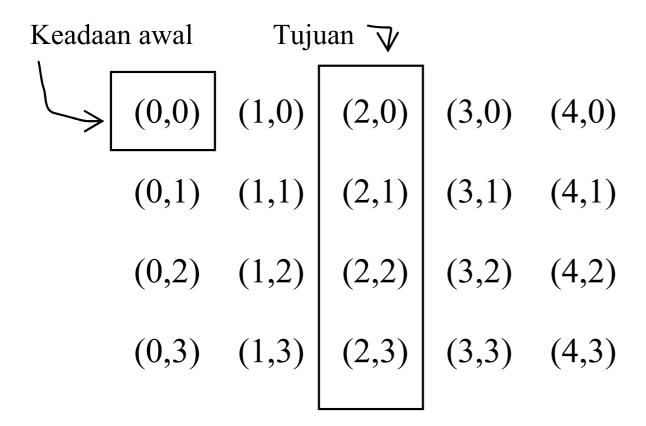
➤ Identifikasi ruang keadaan; permasalahan ini dapat dilambangkan dengan (JumlahSerigala, JumlahAngsa, JumlahPadi, JumlahPetani). Misal, (0,1,1,0) = tidak ada serigala, ada angsa, ada padi dan tidak ada petani.

➤ Keadaan awal dan tujuan ;

- Keadaan awal pada kedua seberang sungai :
 - Daerah asal : (1,1,1,1)
 - Daerah seberang : (0,0,0,0)
- Keadaan akhir pada kedua seberang sungai :
 - Daerah asal : (0,0,0,0)
 - Daerah seberang : (1,1,1,1)

➤ Aturan-aturan

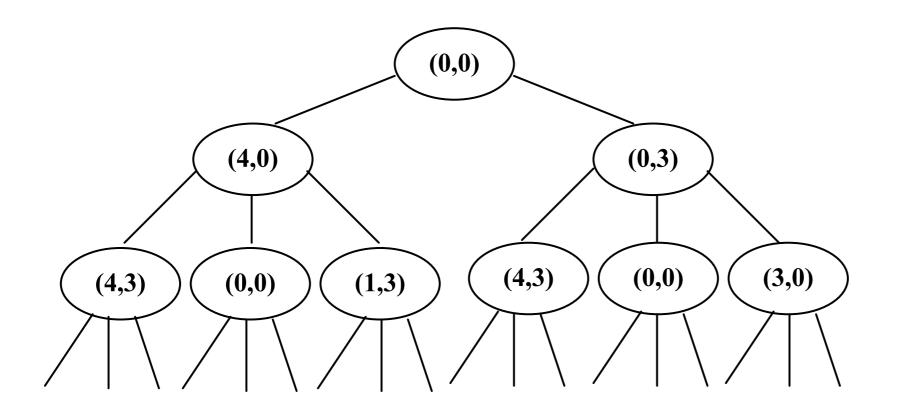
Aturan	Aturan	
Ke-	Tuan	
1	Angsa menyeberang	
2	Padi menyeberang	
3	Serigala menyeberang	
4	Angsa kembali	
5	Padi kembali	
6	Serigala kembali	
7	Petani kembali	


➤ Solusi

Daerah Asal	Daerah	Aturan yang
	Seberang	dipakai
(1,1,1,1)	(0,0,0,0)	1
(1,0,1,0)	(0,1,0,1)	7
(1,0,1,1)	(0,1,0,0)	3
(0,0,1,0)	(1,1,0,1)	4
(0,1,1,1)	(1,0,0,0)	2
(0,1,0,0)	(1,0,1,1)	7
(0,1,0,1)	(1,0,1,0)	1
(0,0,0,0)	(1,1,1,1)	solusi

MASALAH TEKO AIR

- ➤ Terdapat 2 ember masing-masing kapasitas 4 galon (ember A) dan 3 galon (ember B)
- ➤ Terdapat pompa air untuk mengisi ember tersebut
- ➤ Bagaimana mengisi tepat 2 galon air ke dalam ember berkapasitas 4 galon?
- ➤ Identifikasi ruang keadaan ;
 - \bullet x = jumlah air yang diisikan ke ember 4 galon (ember A)
 - y = jumlah air yang diisikan ke ember 3 galon (ember B)
- ➤ Keadaan awal dan tujuan ;
 - Keadaan awal kedua ember kosong (0,0)
 - Keadaan akhir ember 4 galon (ember A) berisi 2 galon air (2,n)


➤ Keadaan ember

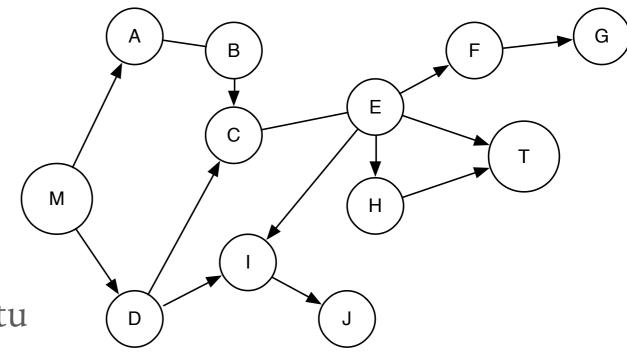
➤ Aturan-aturan

Aturan ke-	Jika	Maka	
1	(x,y)	(4,y)	
	x < 4	Isi ember A	
2	(x,y)	(x,3)	
	y < 3	Isi ember B	
3	(x,y)	(x-d,y)	
	x > 0	Tuang sebagian air keluar dari ember A	
4	(x,y)	(x,y-d)	
	y > 0	Tuang sebagian air keluar dari ember B	
5	(x,y)	(0,y)	
	x > 0	Kosongkan ember A dengan membuang airnya	
6	(x,y)	(x,0)	
	y > 0	Kosongkan ember B dengan membuang airnya	
7	(x,y) $(4,y-(4-x))$		
	$x+y \ge 4 \text{ dan } y > 0$	Tuang air dari ember B ke ember A sampai ember A penuh	
8	(x,y)	(x-(3-y),3)	
	$x+y \ge 3 \operatorname{dan} x > 0$	Tuang air dari ember A ke ember B sampai ember B penuh	
9	(x,y)	(x+y,0)	
	$x+y \le 4 \text{ dan } y > 0$	Tuang seluruh air dari ember B ke ember A	
10	(x,y)	(0,x+y)	
	$x+y \le 3 \text{ dan } x > 0$	Tuang seluruh air dari ember A ke ember B	
11	(0,2)	(2,0)	
		Tuang 2 galon air dari ember B ke ember A	

> Representasi ruang keadaan dengan pohon pelacakan

➤ Solusi yang ditemukan

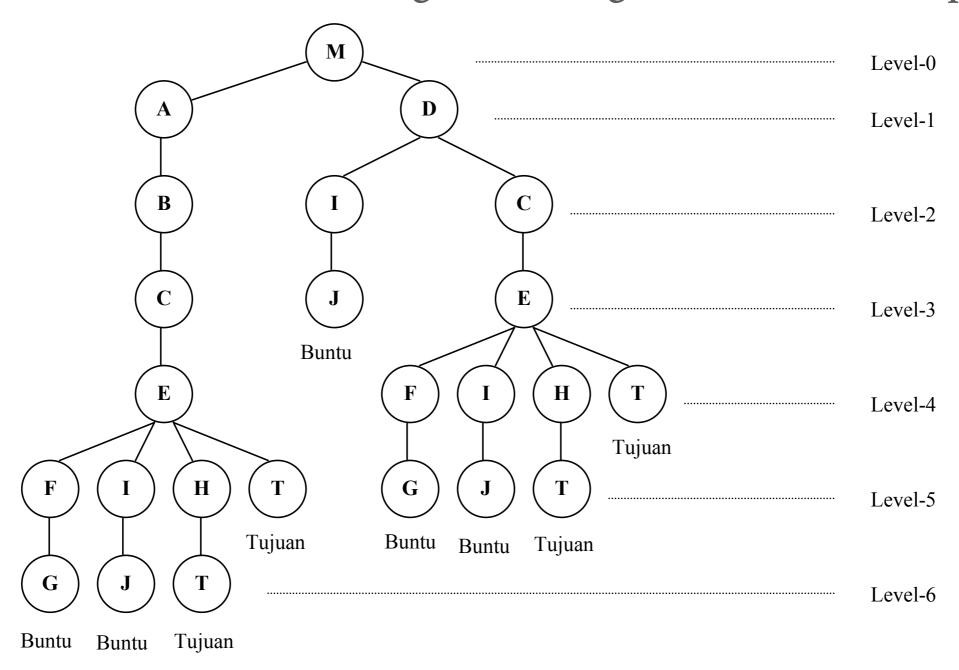
Isi ember A	Isi ember B	Aturan yg dipakai
0	0	1
4	0	8
1	3	6
1	0	10
0	1	1
4	1	8
2	3	Solusi


Isi ember A	Isi ember B	Aturan yg dipakai
0	0	2
0	3	9
3	0	2
3	3	7
4	2	5
0	2	9
2	0	Solusi

- ➤ Representasi masalah dalam Ruang Keadaan (*State Space*); suatu ruang yang berisi semua yang mungkin dilakukan.
- > Sehingga untuk mendeskripsikan masalah dengan baik harus:
 - 1. Mendefinisikan suatu ruang keadaan
 - 2. Menetapkan satu atau lebih keadaan awal
 - 3. Menetapkan satu atau lebih tujuan
 - 4. Menetapkan kumpulan aturan
- ➤ Cara untuk merepresentasikan Ruang Keadaan; Graph Keadaan, Pohon Pelacakan, dan Pohon AND/OR

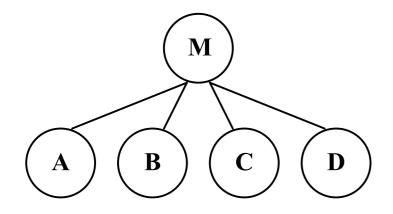
GRAPH KEADAAN

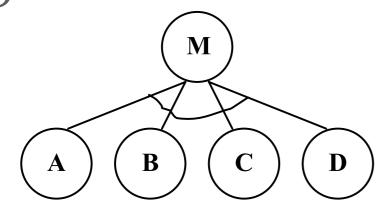
- ➤ Graph terdiri dari node-node yang menunjukkan keadaan yaitu keadaan awal dan keadaan baru yang akan dicapai.
- ➤ Node dalam graph saling dihubungkan dengan menggunakan arc (busur) yang diberikan panah untuk menunjukkan arah dari suatu keadaan ke keadaan berikutnya.
- ➤ Dalam prakteknya sulit untuk menggambarkan graph keadaan.
- ➤ Menunjukkan graph berarah dengan M menunjukkan keadaan awal dan node T adalah tujuan


- ➤ Terdapat 4 lintasan dari M ke T, yaitu :
 - 1. M-A-B-C-E-T
 - 2. M-A-B-C-E-H-T
 - 3. M-D-C-E-T
 - 4. M-D-C-E-H-T
- ➤ Lintasan yang menemui jalan buntu
 - 1. M-A-B-C-E-F-G
 - 2. M-A-B-C-E-I-J
 - 3. M-D-C-E-F-G
 - 4. M-D-C-E-I-J
 - 5. M-D-I-J

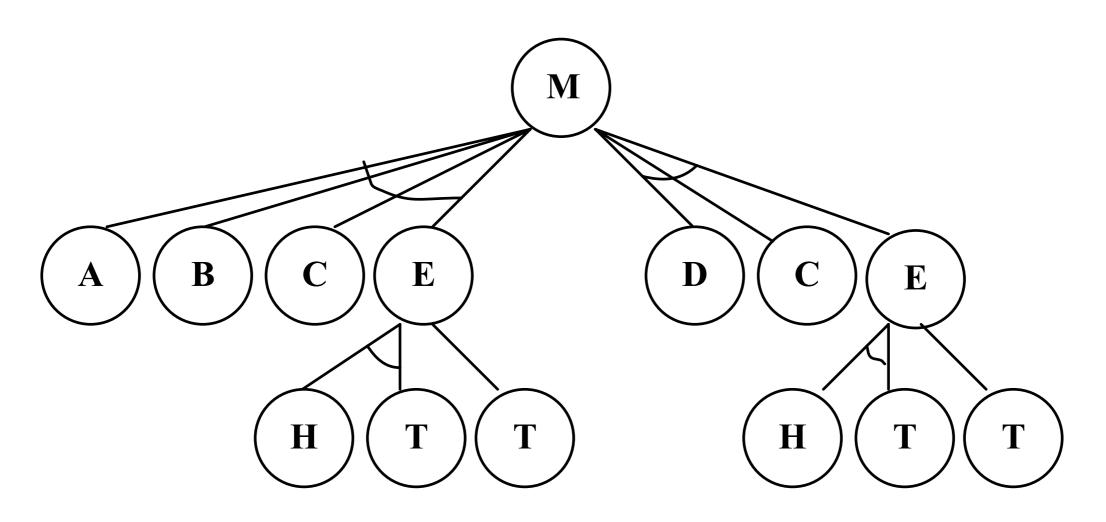
Bentuk graph cukup sulit untuk direpresentasikan dalam suatu software, karena sangat memungkinkan adanya siklus dalam graph tersebut. Seperti siklus D-C-E-I-D node ini akan selalu berulang.

POHON PELACAKAN


➤ Untuk menghindari kemungkinan adanya proses pelacakan suatu node secara berulang, maka digunakan struktur pohon.


- Struktur pohon digunakan untuk menggambarkan keadaan secara hirarkis
- ➤ Node yang terletak pada level 0 = akar
- ➤ Node akar menunjukkan keadaan awal & memiliki beberapa percabangan yang terdiri dari beberapa node = anak
- ➤ Node yang tidak memiliki anak = daun = menunjukkan akhir sebuah pencarian, dapat berupa tujuan (*goal*) atau jalan buntu

POHON AND/OR


Masalah M dicari solusinya dengan 4 kemungkinan yaitu, A OR B OR C OR D

Masalah M dapat diselesaikan dengan A AND B AND C AND D

➤ Dengan menggunakan pohon AND/OR tujuan yang dicapai hanya menjadi 2 level saja

