$WILEY

€D Iicluded . ~
<

Effective Methods for
Software Testing

Includes Complete Guidelines and Checklists

Third Edition

William E. Perry

Effective Methods
for Software Testing

Third Edition

Effective Methods
__ for Software Testing

Third Edition

William E. Perry

WILEY
Wiley Publishing, Inc.

Effective Methods for Software Testing, Third Edition
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com
Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN-13: 978-0-7645-9837-1
ISBN-10: 0-7645-9837-6

Manufactured in the United States of America
10987654321
3MA/QV/QU/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http:/ /www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no repre-
sentations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation warranties of fit-
ness for a particular purpose. No warranty may be created or extended by sales or promo-
tional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in ren-
dering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an orga-
nization or Website is referred to in this work as a citation and/or a potential source of fur-
ther information does not mean that the author or the publisher endorses the information
the organization or Website may provide or recommendations it may make. Further, read-
ers should be aware that Internet Websites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support,
please contact our Customer Care Department within the U.S. at (800) 762-2974, outside the
U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2005036216

Trademarks: Wiley and related trade dress are registered trademarks of Wiley Publishing,
Inc., in the United States and other countries, and may not be used without written permis-
sion. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

www.wiley.com

This book is dedicated to my wife Cynthia, who for many years has been
“testing” my ability to live in accordance with our marriage vows. She
taught me that testing is a lifelong process, that testing is necessary to

ensure that you are meeting your objectives, and that testing can be fun

if it is performed correctly. Thank you, Cynthia. What you have taught me
is incorporated into many of the concepts in this book.

About the Author

William E. Perry holds degrees from Clarkson University, University of Rochester, and
Rochester Institute of Technology. Bill also holds the following professional certifica-
tions: CPA (Certified Public Accountant), CIA (Certified Internal Auditor), CISA (Cer-
tified Information Services Auditor), CSQA (Certified Software Quality Analyst), and
CSTE (Certified Software Tester). He has been an examiner for the Malcolm Baldrige
National Quality Award, and served on standards committees for NIST (National
Institute of Standards and Technology), IEEE (Institute of Electrical and Electronics
Engineers), AICPA (American Institute of Certified Public Accountants) and ISACA
(Information Systems Audit and Control Association).

In 1980, Bill founded the Quality Assurance Institute (QAI), a professional associa-
tion for testers. QAI offers professional certification for Quality Assurance, Software
Testing, Software Project Leaders and Business Analyst Professional. More than 27,000
individuals have been certified since the inception of the program.

Bill has authored more than 50 books, many published by John Wiley & Sons. He
recently founded the Internal Control Institute (ICI). ICI and St. Petersburg College
recently formed the Internal Control Center of Excellence to share best internal control
practices, hold conferences on emerging internal control practices, and to offer e-learning
courses and a professional certification in internal control.

Executive Editor
Robert Elliott

Production Editor
Felicia Robinson

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Michael Kruzil

Credits

Graphics and Production Specialists
Carrie Foster

Mary J. Gillot

Lauren Goddard

Denny Hager

Joyce Haughyey

Stephanie D. Jumper

Rashell Smith

Quality Control Technicians
John Greenough
Brian H. Walls

Proofreading and Indexing
Techbooks

Introduction

Part |
Chapter 1

Part 11
Chapter 2

Contents

Assessing Testing Capabilities and Competencies

Assessing Capabilities, Staff Competency, and User
Satisfaction
The Three-Step Process to Becoming a World-Class Testing
Organization
Step 1: Define a World-Class Software Testing Model
Customizing the World-Class Model for Your Organization
Step 2: Develop Baselines for Your Organization
Assessment 1: Assessing the Test Environment
Implementation Procedures
Verifying the Assessment
Assessment 2: Assessing the Capabilities of Your Existing
Test Processes
Assessment 3: Assessing the Competency of Your Testers
Implementation Procedures
Verifying the Assessment
Step 3: Develop an Improvement Plan
Summary

Building a Software Testing Environment

Creating an Environment Supportive of Software Testing
Minimizing Risks
Risk Appetite for Software Quality
Risks Associated with Implementing Specifications
Faulty Software Design
Data Problems

XXV

37
38
38
39
39
39

ix

X

Contents

Chapter 3

Risks Associated with Not Meeting Customer Needs
Developing a Role for Software Testers
Writing a Policy for Software Testing
Criteria for a Testing Policy
Methods for Establishing a Testing Policy
Economics of Testing
Testing—An Organizational Issue
Management Support for Software Testing
Building a Structured Approach to Software Testing
Requirements
Design
Program
Test
Installation
Maintenance
Developing a Test Strategy
Use Work Paper 2-1
Use Work Paper 2-2
Summary

Building the Software Testing Process
Software Testing Guidelines
Guideline #1: Testing Should Reduce Software Development
Risk
Guideline #2: Testing Should Be Performed Effectively
Guideline #3: Testing Should Uncover Defects
Defects Versus Failures
Why Are Defects Hard to Find?
Guideline #4: Testing Should Be Performed Using Business
Logic
Guideline #5: Testing Should Occur Throughout the
Development Life Cycle
Guideline #6: Testing Should Test Both Function and Structure
Why Use Both Testing Methods?
Structural and Functional Tests Using Verification and
Validation Techniques
Workbench Concept
Testing That Parallels the Software Development Process
Customizing the Software-Testing Process
Determining the Test Strategy Objectives
Determining the Type of Development Project
Determining the Type of Software System
Determining the Project Scope
Identifying the Software Risks
Determining When Testing Should Occur
Defining the System Test Plan Standard

40
43
45
45
46
47
50
50
51
54
54
55
55
55
55
56
58
58
60

63
63

64
65
65
65
66

67

68
69
69

69
71
72
74
74
75
76
77
77
79
79

Contents

Chapter 4

Chapter 5

Part 111
Chapter 6

Chapter 7

Defining the Unit Test Plan Standard
Converting Testing Strategy to Testing Tactics
Process Preparation Checklist
Summary

Selecting and Installing Software Testing Tools
Integrating Tools into the Tester’s Work Processes
Tools Available for Testing Software
Selecting and Using Test Tools
Matching the Tool to Its Use
Selecting a Tool Appropriate to Its Life Cycle Phase
Matching the Tool to the Tester’s Skill Level
Selecting an Affordable Tool
Training Testers in Tool Usage
Appointing Tool Managers
Prerequisites to Creating a Tool Manager Position
Selecting a Tool Manager
Assigning the Tool Manager Duties
Limiting the Tool Manager’s Tenure
Summary

Building Software Tester Competency
What Is a Common Body of Knowledge?
Who Is Responsible for the Software Tester’s Competency?
How Is Personal Competency Used in Job Performance?
Using the 2006 CSTE CBOK
Developing a Training Curriculum
Using the CBOK to Build an Effective Testing Team
Summary

The Seven-Step Testing Process

Overview of the Software Testing Process

Advantages of Following a Process

The Cost of Computer Testing
Quantifying the Cost of Removing Defects
Reducing the Cost of Testing

The Seven-Step Software Testing Process
Objectives of the Seven-Step Process
Customizing the Seven-Step Process
Managing the Seven-Step Process
Using the Tester’s Workbench with the Seven-Step Process

Workbench Skills

Summary

Step 1: Organizing for Testing
Objective

Workbench

Input

83
83
86
86

103
103
104
108
109
109
111
114
116
117
118
118
119
120
120

125
125
126
126
127
128
129
131

151

153
153
154
155
156
156
159
160
161
162
163
164

165
165
166
167

Contents

Chapter 8

Do Procedures
Task 1: Appoint the Test Manager
Task 2: Define the Scope of Testing
Task 3: Appoint the Test Team
Internal Team Approach
External Team Approach
Non-IT Team Approach
Combination Team Approach
Task 4: Verify the Development Documentation
Development Phases
Measuring Project Documentation Needs
Determining What Documents Must Be Produced
Determining the Completeness of Individual Documents
Determining Documentation Timeliness
Task 5: Validate the Test Estimate and Project Status
Reporting Process
Validating the Test Estimate
Testing the Validity of the Software Cost Estimate
Calculating the Project Status Using a Point System
Check Procedures
Output
Summary

Step 2: Developing the Test Plan
Overview
Objective
Concerns
Workbench
Input
Do Procedures
Task 1: Profile the Software Project
Conducting a Walkthrough of the Customer/User Area
Developing a Profile of the Software Project
Task 2: Understand the Project Risks
Task 3: Select a Testing Technique
Structural System Testing Techniques
Functional System Testing Techniques
Task 4: Plan Unit Testing and Analysis
Functional Testing and Analysis
Structural Testing and Analysis
Error-Oriented Testing and Analysis
Managerial Aspects of Unit Testing and Analysis
Task 5: Build the Test Plan
Setting Test Objectives
Developing a Test Matrix
Defining Test Administration
Writing the Test Plan

167
167
168
168
169
170
170
170
171
171
174
175
179
180

181
182
185
189
200
200
200

209
209
210
210
211
212
212
212
212
213
215
222
223
229
235
236
238
240
243
244
245
245
250
251

Contents xiii
Task 6: Inspect the Test Plan 254
Inspection Concerns 255
Products/Deliverables to Inspect 256
Formal Inspection Roles 256
Formal Inspection Defect Classification 258
Inspection Procedures 259
Check Procedures 262
Output 262
Guidelines 262
Summary 263
Chapter 9 Step 3: Verification Testing 291
Overview 292
Objective 293
Concerns 294
Workbench 294
Input 296
The Requirements Phase 296
The Design Phase 296
The Programming Phase 297
Do Procedures 298
Task 1: Test During the Requirements Phase 298
Requirements Phase Test Factors 299
Preparing a Risk Matrix 302
Performing a Test Factor Analysis 310
Conducting a Requirements Walkthrough 312
Performing Requirements Tracing 314
Ensuring Requirements Are Testable 315
Task 2: Test During the Design Phase 316
Scoring Success Factors 316
Analyzing Test Factors 318
Conducting a Design Review 320
Inspecting Design Deliverables 322
Task 3: Test During the Programming Phase 323
Desk Debugging the Program 325
Performing Programming Phase Test Factor Analysis 326
Conducting a Peer Review 328
Check Procedures 330
Output 331
Guidelines 331
Summary 332
Chapter 10 Step 4: Validation Testing 409
Overview 409
Objective 410
Concerns 410
Workbench 410
Input 411

xiv Contents

Chapter 11

Do Procedures
Task 1: Build the Test Data
Sources of Test Data/Test Scripts
Testing File Design
Defining Design Goals
Entering Test Data
Applying Test Files Against Programs That Update
Master Records
Creating and Using Test Data
Payroll Application Example
Creating Test Data for Stress/Load Testing
Creating Test Scripts
Task 2: Execute Tests
Task 3: Record Test Results
Documenting the Deviation
Documenting the Effect
Documenting the Cause
Check Procedures
Output
Guidelines
Summary

Step 5: Analyzing and Reporting Test Results
Overview
Concerns
Workbench
Input
Test Plan and Project Plan
Expected Processing Results
Data Collected during Testing
Test Results Data
Test Transactions, Test Suites, and Test Events
Defects
Efficiency
Storing Data Collected During Testing
Do Procedures
Task 1: Report Software Status
Establishing a Measurement Team
Creating an Inventory of Existing Project Measurements
Developing a Consistent Set of Project Metrics
Defining Process Requirements
Developing and Implementing the Process
Monitoring the Process
Task 2: Report Interim Test Results
Function/Test Matrix
Functional Testing Status Report
Functions Working Timeline Report
Expected Versus Actual Defects Uncovered Timeline Report

412
412
412
413
414
414

414
415
416
430
430
434
436
437
438
438
439
439
439
440

459
459
460
460
461
461
461
461
462
462
462
463
463
463
464
465
465
466
466
466
466
470
470
471
472
472

Contents

XV

Chapter 12

Defects Uncovered Versus Corrected Gap Timeline Report 473

Average Age of Uncorrected Defects by Type Report 475
Defect Distribution Report 475
Normalized Defect Distribution Report 476
Testing Action Report 477
Interim Test Report 478
Task 3: Report Final Test Results 478
Individual Project Test Report 480
Integration Test Report 480
System Test Report 480
Acceptance Test Report 482
Check Procedures 482
Output 482
Guidelines 482
Summary 483
Step 6: Acceptance and Operational Testing 491
Overview 491
Objective 492
Concerns 493
Workbench 494
Input Procedures 495
Task 1: Acceptance Testing 496
Defining the Acceptance Criteria 497
Developing an Acceptance Plan 498
Executing the Acceptance Plan 499
Developing Test Cases (Use Cases) Based on How
Software Will Be Used 500
Task 2: Pre-Operational Testing 503
Testing New Software Installation 509
Testing the Changed Software Version 509
Monitoring Production 512
Documenting Problems 513
Task 3: Post-Operational Testing 513
Developing and Updating the Test Plan 514
Developing and Updating the Test Data 515
Testing the Control Change Process 517
Conducting Testing 518
Developing and Updating Training Material 518
Check Procedures 522
Output 522
Is the Automated Application Acceptable? 522
Automated Application Segment Failure Notification 523
Is the Manual Segment Acceptable? 523
Training Failure Notification Form 524
Guidelines 524

Summary 525

xvi Contents
Chapter 13 Step 7: Post-Implementation Analysis 571
Overview 571
Concerns 572
Workbench 572
Input 574
Do Procedures 574
Task 1: Establish Assessment Objectives 574
Task 2: Identify What to Measure 575
Task 3: Assign Measurement Responsibility 575
Task 4: Select Evaluation Approach 575
Task 5: Identify Needed Facts 576
Task 6: Collect Evaluation Data 577
Task 7: Assess the Effectiveness of Testing 577
Using Testing Metrics 577
Check Procedures 580
Output 580
Guidelines 581
Summary 581
Part IV Incorporating Specialized Testing Responsibilities 583
Chapter 14 Software Development Methodologies 585
How Much Testing Is Enough? 585
Software Development Methodologies 586
Overview 586
Methodology Types 587
Software Development Life Cycle 588
Defining Requirements 592
Categories 592
Attributes 593
Methodology Maturity 596
Competencies Required 598
Staff Experience 600
Configuration-Management Controls 600
Basic CM Requirements 600
Planning 602
Data Distribution and Access 602
CM Administration 602
Configuration Identification 603
Configuration Control 605
Measuring the Impact of the Software Development Process 605
Summary 606
Chapter 15 Testing Client/Server Systems 611
Overview 611
Concerns 612
Workbench 613
Input 614

Contents xvii

Chapter 16

Chapter 17

Do Procedures
Task 1: Assess Readiness
Software Development Process Maturity Levels
Conducting the Client/Server Readiness Assessment
Preparing a Client/Server Readiness Footprint Chart
Task 2: Assess Key Components
Task 3: Assess Client Needs
Check Procedures
Output
Guidelines
Summary

Rapid Application Development Testing
Overview
Objective
Concerns
Testing Iterations
Testing Components
Testing Performance
Recording Test Information
Workbench
Input
Do Procedures
Testing Within Iterative RAD
Spiral Testing
Task 1: Determine Appropriateness of RAD
Task 2: Test Planning Iterations
Task 3: Test Subsequent Planning Iterations
Task 4: Test the Final Planning Iteration
Check Procedures
Output
Guidelines
Summary

Testing Internal Controls
Overview
Internal Controls
Control Objectives
Preventive Controls
Source-Data Authorization
Data Input
Source-Data Preparation
Turnaround Documents
Prenumbered Forms
Input Validation
File Auto-Updating
Processing Controls

614
614
615
621
621
622
622
624
624
624
624

633
633
634
634
634
635
635
635
635
636
636
636
638
639
640
640
642
642
643
643
643

655
655
657
657
658
658
659
659
659
659
659
661
661

xviii Contents

Detective Controls
Data Transmission
Control Register
Control Totals
Documenting and Testing
Output Checks
Corrective Controls
Error Detection and Resubmission
Audit Trails
Cost/Benefit Analysis
Assessing Internal Controls
Task 1: Understand the System Being Tested
Task 2: Identify Risks
Task 3: Review Application Controls
Task 4: Test Application Controls
Testing Without Computer Processing
Testing with Computer Processing
Transaction Flow Testing
Objectives of Internal Accounting Controls
Results of Testing
Task 5: Document Control Strengths and Weaknesses
Quality Control Checklist
Summary

Chapter 18 Testing COTS and Contracted Software
Overview
COTS Software Advantages, Disadvantages, and Risks
COTS Versus Contracted Software
COTS Advantages
COTS Disadvantages
Implementation Risks
Testing COTS Software
Testing Contracted Software
Objective
Concerns
Workbench
Input
Do Procedures
Task 1: Test Business Fit
Step 1: Testing Needs Specification
Step 2: Testing CSFs
Task 2: Test Operational Fit
Step 1: Test Compatibility
Step 2: Integrate the Software into Existing Work Flows
Step 3: Demonstrate the Software in Action
Task 3: Test People Fit

662
663
663
664
664
664
665
665
665
666
666
666
668
668
668
669
669
672
673
677
677
678
678

685
686
686
686
687
687
688
689
690
691
691
692
693
693
693
693
695
696
697
698
700
701

Contents

Chapter 19

Chapter 20

Task 4: Acceptance-Test the Software Process
Step 1: Create Functional Test Conditions
Step 2: Create Structural Test Conditions

Modifying the Testing Process for Contracted Software

Check Procedures
Output
Guidelines
Summary

Testing in a Multiplatform Environment
Overview
Objective
Concerns

Background on Testing in a Multiplatform Environment

Workbench

Input

Do Procedures
Task 1: Define Platform Configuration Concerns
Task 2: List Needed Platform Configurations
Task 3: Assess Test Room Configurations

702
702
703
704
705
705
706
706

17
717
718
718
718
719
720
721
721
723
723

Task 4: List Structural Components Affected by the Platform(s) 723

Task 5: List Interfaces the Platform Affects
Task 6: Execute the Tests

Check Procedures

Output

Guidelines

Summary

Testing Software System Security
Overview
Objective
Concerns
Workbench
Input
Where Vulnerabilities Occur
Functional Vulnerabilities
Vulnerable Areas
Accidental Versus Intentional Losses
Do Procedures
Task 1: Establish a Security Baseline
Why Baselines Are Necessary
Creating Baselines
Using Baselines
Task 2: Build a Penetration-Point Matrix
Controlling People by Controlling Activities
Selecting Security Activities
Controlling Business Transactions

725
726
726
726
726
727

733
733
734
734
734
735
735
736
737
738
739
739
740
740
749
751
751
752
755

XX

Contents

Chapter 21

Chapter 22

Characteristics of Security Penetration
Building a Penetration-Point Matrix
Task 3: Analyze the Results of Security Testing

Evaluating the Adequacy of Security

Check Procedures

Output

Guidelines

Summary

Testing a Data Warehouse
Overview
Concerns
Workbench
Input
Do Procedures
Task 1: Measure the Magnitude of Data Warehouse Concerns
Task 2: Identify Data Warehouse Activity Processes to Test
Organizational Process
Data Documentation Process
System Development Process
Access Control Process
Data Integrity Process
Operations Process
Backup/Recovery Process
Performing Task 2
Task 3: Test the Adequacy of Data Warehouse Activity
Processes
Check Procedures
Output
Guidelines
Summary

Testing Web-Based Systems

Overview

Concerns

Workbench

Input

Do Procedures

Task 1: Select Web-Based Risks to Include in the Test Plan

Security Concerns
Performance Concerns
Correctness Concerns
Compeatibility Concerns
Reliability Concerns
Data Integrity Concerns
Usability Concerns
Recoverability Concerns

756
757
760
761
762
762
762
762

765
765
765
766
767
768
768
769
769
769
770
771
771
772
773
774

774
780
780
780
780

799
799
800
800
801
802
802
803
803
804
804
806
806
806
807

Contents

Part V
Chapter 23

Chapter 24

Task 2: Select Web-Based Tests
Unit or Component
Integration
System
User Acceptance
Performance
Load/Stress
Regression
Usability
Compatibility

Task 3: Select Web-Based Test Tools

Task 4: Test Web-Based Systems

Check Procedures
Output
Guidelines
Summary

Building Agility into the Testing Process
Using Agile Methods to Improve Software Testing

The Importance of Agility
Building an Agile Testing Process
Agility Inhibitors
Is Improvement Necessary?
Compressing Time

Challenges

Solutions

Measuring Readiness

The Seven-Step Process
Summary

Building Agility into the Testing Process
Step 1: Measure Software Process Variability
Timelines
Process Steps
Workbenches
Time-Compression Workbenches
Reducing Variability
Developing Timelines
Improvement Shopping List
Quality Control Checklist
Conclusion
Step 2: Maximize Best Practices
Tester Agility
Software Testing Relationships
Tradeoffs
Capability Chart
Measuring Effectiveness and Efficiency

807
807
807
807
808
808
808
808
808
808
809
809
809
810
810
811

817

819
819
820
821
822
823
824
825
826
826
827

831
831
832
833
833
834
835
836
841
841
842
842
842
843
845
847
848

xxii Contents

Improvement Shopping List
Quality Control Checklist
Conclusion
Step 3: Build on Strength, Minimize Weakness
Effective Testing Processes
Poor Testing Processes
Improvement Shopping List
Quality Control Checklist
Conclusion
Step 4: Identify and Address Improvement Barriers
The Stakeholder Perspective
Stakeholder Involvement
Performing Stakeholder Analysis
Red-Flag/Hot-Button Barriers
Staff-Competency Barriers
Administrative/Organizational Barriers
Determining the Root Cause of Barriers/Obstacles
Addressing the Root Cause of Barriers/Obstacles
Quality Control Checklist
Conclusion
Step 5: Identify and Address Cultural and Communication
Barriers
Management Cultures
Culture 1: Manage People
Culture 2: Manage by Process
Culture 3: Manage Competencies
Culture 4: Manage by Fact
Culture 5: Manage Business Innovation
Cultural Barriers
Identifying the Current Management Culture
Identifying the Barriers Posed by the Culture
Determining What Can Be Done in the Current Culture
Determining the Desired Culture for Time Compression
Determining How to Address Culture Barriers
Open and Effective Communication
Lines of Communication
Information/Communication Barriers
Effective Communication
Quality Control Checklist
Conclusion
Step 6: Identify Implementable Improvements
What Is an Implementable?
Identifying Implementables via Time Compression
Prioritizing Implementables
Documenting Approaches
Quality Control Checklist
Conclusion

856
856
857
857
857
860
860
860
861
861
861
863
863
864
865
865
866
867
869
869

869
870
871
873
874
876
878
879
879
879
879
879
880
880
881
882
882
884
885
885
885
886
888
890
890
890

Contents xxiii

Step 7: Develop and Execute an Implementation Plan 891
Planning 891
Implementing Ideas 891
Requisite Resources 893

Quality Control Checklist 894
Conclusion 894
Summary 895

Index 929

Introduction

Most books about software testing explain “what” to do. This book, on the other hand,
takes more of a “how-to” approach. It provides the procedures, templates, checklists,
and assessment questionnaires necessary to conduct effective and efficient software
testing.

The book is divided into five parts, as follows:

m Part One: Assessing Testing Capabilities and Competencies. It is difficult to
make any significant change until you know where you are. A baseline tells not
only where you are, but lets you measure your progress as your testing strate-
gies and techniques improve. Part One provides three baseline assessments: the
capabilities of your software testing group, the competencies of your individ-
ual testers, and the effectiveness of your test processes.

m Part Two: Building a Software Testing Environment. Software testers are
most effective when they work in an environment that encourages and supports
well-established testing policies and procedures. The environment includes the
procedures and tools for testing, as well as the support and encouragement of
management. Part Two begins by describing how to build an environment con-
ducive to testing, and then expands the discussion by describing how to develop
a testing process, select testing tools, and build the competency of your testers.

m Part Three: The Seven-Step Testing Process. Part Three comprises the core
material in the book. It defines a world-class software testing process, from its
initiation through testing changes made to operational software systems. This
material can be used two ways. First, it contains sufficient procedures and tem-
plates so that an organization can use the process as their own. Of course, most
organizations inevitably will make some changes to accommodate local vocab-
ulary, specific needs, and customs. This customization process, the seven-step
process in this book becomes “owned” by the software testers.

XXV

xXXvi

Introduction

m Part Four: Incorporating Specialized Testing Responsibilities. The seven-step
testing process is a generic process that almost all software testing organiza-
tions can use. However, the mission of software testers may incorporate spe-
cialized activities, such as testing security. Rather than incorporating these
specialized testing activities directly into the seven-step process, they are pre-
sented as individual, specialized activities. As appropriate, they can be incor-
porated into the seven-step process.

m Part Five: Building Agility into the Testing Process. Part Five, which draws
on what you've learned earlier in the book, is designed to help you identify the
strengths and weaknesses of your current software testing process, and then
modify it to become more usable or agile.

Getting the Most Out of This Book

This book is not designed to be read like a novel, from beginning to end, nor is it filled
with human interest stories about testers. The book focuses on how to conduct software
testing. It is designed to help you improve your testing competencies and processes. The
self-assessments in Part One will help you identify which parts of the book you need to
read first.

The following guidelines will help you maximize the benefit from this book:

m Establish a baseline of current performance. Part One of this book (and Chap-
ter 5) contains four self-assessments for establishing baselines. You need to
know where you are so that you can develop a good plan for moving forward.

m Define the software testing organization you would like to have. It has been
said that if you do not know where you're going, all roads lead there. Too many
software testing groups just add new testing programs, processes, and tools
without knowing if they will integrate effectively.

m Develop a plan for moving from your baseline to your goal. Few organiza-
tions can quickly and effectively install an entirely new software testing
process. Gradual change is normally much better than radical change. There-
fore, identify the gaps between where you are and where you want to be.
Determine which of those gaps if closed would provide the greatest benefit to
your organization. That becomes the part of the plan you implement first. Over
time you will move the entire testing process from your current baseline to
your desired goal.

For additional information on software testing conferences and training programs,
visit www . taiworldwide.org. For information on software testing certifications,
visit www . softwarecertifications.org.

What's New in the Third Edition

The core of this book is the step-by-step process for testing software. This edition has
simplified that process from 11 steps to 7 steps.

Introduction xxvii

A major addition to this edition is the self-assessment in Chapter 5, which testers can
use to identify their strengths and weaknesses and then build a personal improvement
plan. The self-assessment is based on the Common Body of Knowledge (CBOK) for the
Certified Software Tester (CSTE).

Other significant additions include

m A new chapter on testing internal control
m An expanded chapter on testing security

m A new chapter on adapting testing to the developmental methodology used to
build the software

m Two new chapters on how to incorporate agile methods into the testing process

What's on the CD

This book includes a CD that contains the work papers and quality control checklists
to help you implement the software testing process.

To use the CD, first you need to select a software testing activity that you want to
implement in your organization—for example, test planning. Then, from the chapter
on test planning, identify those work papers and checklists that you believe would be
beneficial to your organization. You can extract those work papers and checklists from
the CD and begin a customization process. For example, you can include the name of
your organization, add or delete portions of the work papers, and change the termi-
nology to be consistent with your organization.

After you have used the work papers for conducting a software test, you should
bundle the work papers into a case study for new testers. If they use the book to learn
the basics of software testing and then can cross reference what they have learned to
examples of how the work papers are actually used in software testing, learning
should be accelerated.

Effective Methods
for Software Testing

Third Edition

 PART _
 One
Assessing Testing

Capabilities and

Competencies

Assessing Capabilities, Staff
Competency, and User
Satisfaction

It has been said, “If you do not know where you are going, all roads lead there.” Tra-
ditionally, many IT organizations annually develop a list of improvements to incorpo-
rate into their operations without establishing a goal. Using this approach, the IT
organization can declare “victory” any time it wants.

This chapter will help you understand the importance of following a well-defined
process for becoming a world-class software testing organization. This chapter will
help you define your strengths and deficiencies, your staff competencies and deficien-
cies, and areas of user dissatisfaction.

The objective of this chapter is threefold: to define a world-class software testing
model, to provide a self-assessment process for your software testing organization to
measure yourself against the world-class model, and to provide some planning con-
siderations for moving to a world-class level.

The Three-Step Process to Becoming a
World-Class Testing Organization

The roadmap to become a world-class software testing organization is a simple three-
step process, as follows:

1. Define or adopt a world-class software testing model.

2. Determine your organization’s current level of software testing capabilities,
competencies, and user satisfaction.

Chapter 1

3. Develop and implement a plan to upgrade from your current capabilities, com-
petencies, and user satisfaction to those in the world-class software testing
model.

This three-step process requires you to compare your current capabilities, compe-
tencies, and user satisfaction against those of the world-class software testing model.
This assessment will enable you to develop a baseline of your organization’s perfor-
mance. The plan that you develop will, over time, move that baseline from its current
level of performance to a world-class level. Understanding the model for a world-class
software testing organization and then comparing your organization will provide you
with a plan for using the remainder of the material in this book.

Software testing is an integral part of the software-development process, which
comprises the following four components (see Figure 1-1):

1. Plan (P): Devise a plan. Define your objective and determine the strategy and
supporting methods to achieve it. You should base the plan on an assessment
of your current situation, and the strategy should clearly focus on the strategic
initiatives/key units that will drive your improvement plan.

2. Do (D): Execute the plan. Create the conditions and perform the necessary
training to execute the plan. Make sure everyone thoroughly understands the
objectives and the plan. Teach workers the procedures and skills they need to
fulfill the plan and thoroughly understand the job. Then perform the work
according to these procedures.

3. Check (C): Check the results. Check to determine whether work is progressing
according to the plan and whether the expected results are being obtained.
Check for performance of the set procedures, changes in conditions, or abnor-
malities that may appear. As often as possible, compare the results of the work
with the objectives.

4. Act (A): Take the necessary action. If your checkup reveals that the work is not
being performed according to the plan or that results are not what you antici-
pated, devise measures to take appropriate actions.

PLAN

ACT DO

CHECK

Figure 1-1 The four components of the software-development process.

Assessing Capabilities, Staff Competency, and User Satisfaction

Testing involves only the “check” component of the plan-do-check-act (PDCA)
cycle. The software development team is responsible for the three remaining compo-
nents. The development team plans the project and builds the software (the “do” com-
ponent); the testers check to determine that the software meets the needs of the
customers and users. If it does not, the testers report defects to the development team.
It is the development team that makes the determination as to whether the uncovered
defects are to be corrected.

The role of testing is to fulfill the check responsibilities assigned to the testers; it is
not to determine whether software can be placed into production. That is the responsi-
bility of the customers, users, and development team.

Step 1: Define a World-Class
Software Testing Model

There is no generally accepted model for a world-class software testing organization.
However, analyzing the best testing organizations among the more than 1,000 IT orga-
nizations affiliated with the Quality Assurance Institute (QAI) enabled QAI to identify
the attributes of the best software testing organizations (see Figure 1-2). Organizations
that follow this model report more effective and efficient testing than those that do not.

Stakeholders
Satisfaction

Y

Test Environment
* Mission 3 Enabling N Test R Pl)ecséss
* Goals Competencies Processes Improvement
e Strategy
Management
Testing Strategic of Testing Testing Tactical
Dashboard Dashboard

O OG0

Figure 1-2 Model of a world-class software testing organization.

6 Chapter 1

The world-class software testing model includes

m Test environment. The conditions that management has put into place that
both enable and constrain how testing is performed. The test environment
includes management support, resources, work processes, tools, motivation,
and so forth.

m Process to test a single software project. The standards and procedures testers
use to test.

m Tester competency. The skill sets needed to test software in a test environment.
The three self-assessments that follow are for the above three attributes of a
world-class software testing organization.

.m The three self-assessments in this chapter correspond to the preceding
three attributes of a world-class software testing organization.

The world-class model of a software testing organization focuses on stakeholder sat-
isfaction. This assumes a greater role for a world-class software testing organization
than just testing against documented software requirements. Chapter 2 defines the
many roles that software testing can adopt; however, those roles include much more
than testing documented software requirements. They include testing for quality fac-
tors such as ease of use, meeting testing schedules and budgets, and minimizing the
risks involved with any software project.

According to the world-class model, the following parties have a vested interest in
software testing:

m Software customer. The party or department that contracts for the software to
be developed.

m Software user. The individual or group that will use the software once it is
placed into production. (Note: This may be the customer or it may be parties
other than the customer.)

m Software developer. The individual or group that receives the requirements
from the software user or assists in writing them, designing, building, and
maintaining the software, as needed.

m Development tester. The individual or group that performs the test function
within the software development group.

m T management. The individual or group with responsibility for fulfilling the
information technology mission. Testing supports fulfilling that mission.

m Senior management. The CEO of the organization and other senior executives
who are responsible for fulfilling the organization mission. Information tech-
nology is an activity that supports fulfilling that mission.

m Auditor. The individual or group responsible for evaluating the effectiveness,
efficiency, and adequacy of controls in the information technology area. Testing
is considered a control by the audit function.

Assessing Capabilities, Staff Competency, and User Satisfaction

m Project manager. The individual responsible for managing the building, main-
taining, and/or implementing of software.

The test mission, strategy, and environment must be focused on stakeholder satis-
faction. The mission defines the testing objectives; the strategy defines how the mission
will be accomplished; and the environment provides the culture, processes, and tools
that are conducive to effective and efficient software testing.

The test processes are those step-by-step procedures that the testers will follow to
accomplish their assigned tasks. Test processes executed by trained and competent
testers enable those testers to accomplish the defined test mission.

The test processes need to be improved continually for two reasons: to make them
more effective and efficient to use, and to incorporate updated approaches into testing
new technologies and software development methodologies.

The responsibility for ensuring that the execution of the test processes meets the
defined test mission lies with management. Management must ensure that testers are
following and can accomplish the test plan, and that the plan will, in fact, accomplish
the test objectives. If not, management should modify the plan to meet those objectives.

Management and testers need tools to enable them to fulfill their responsibilities.
Two very important tools are the testing strategic dashboard and the testing tactical
dashboard. The testing strategic dashboard includes key indicators such as user satisfac-
tion, staff competency, and the percent of tests completed. The testing tactical dashboard
includes test indicators such as the number of requirements tested and percent correct,
defects uncovered, defects corrected and uncorrected, and the schedule and budget
status.

Management must ensure that if you meet the testing tactical key indicators, you
will, in fact, meet the objectives defined by the strategic key indicators.

Customizing the World-Class Model for Your
Organization

You can customize the world-class model for software testing by defining the attrib-
utes of each of its components (refer to Figure 1-2). The material in this book explains
the attributes of all the components: stakeholder satisfaction, test mission, test man-
agement and enabling competencies are discussed in Part 2. The test processes are
explained in Parts 3 and 4. Test process improvement is described in Part 5 of this book.

As you read those parts of the book, you can customize those attributes based on the
mission of your organization. For example, in describing a tester’s competency, skill sets
for testing COTS software and outsourced software will be listed. However, if your orga-
nization does not use COTS software or does not outsource the development of software,
you would not need those skills in your testing staff. Likewise, if your testers are not
responsible for testing security, you would not need a test processes for testing security.

The three self-assessments included in this chapter are based on the model in Figure
1-2. However, it is recognized that few testing organizations need all these testing
capabilities and competencies. Therefore, you need to develop the model that is suited
to your test mission.

Chapter 1

Step 2: Develop Baselines for Your Organization

This section presents the following three self-assessment categories to enable you to
compare your testing organization against the world-class model:

1. Assessing the test environment. This includes user satisfaction, management
support, environment, planning, tools, test processes, measurement, quality
control, and training.

2. Assessing the process for testing individual software projects. This category
of assessment will assess your testing process against the seven-step process for
testing individual software projects presented in Part 3 of this book.

3. Assessing the competencies of software testers. This self-assessment will be
based on the 2006 Common Body of Knowledge (CBOK) developed by the
Certification Board of the Software Certifications Organization. Each of the
recommended ten competencies for software tester will be assessed. A more
detailed assessment to be used in individuals to compare their specific test
competencies against the 2006 CBOK is provided in Chapter 5.

Assessment 1: Assessing the Test Environment

During the past 25 years, the Quality Assurance Institute (QAI) has been studying
what makes software testing organizations successful. As a result, QAI has identified
the following eight criteria:

Test environment planning

Management support

Use of test processes

Test tools

Quality control

Test measurement

User satisfaction

Test training

When these eight criteria are in place and working, the result is normally a world-
class testing organization.

The assessment process developed by QALI has five items to address within each of
the eight criteria. The more of those items that are in place and working, the more
likely that criteria will contribute to world-class testing. Figure 1-3 shows a cause-effect

diagram indicating the areas to address, called drivers, which results in a world-class
testing organization.

Assessing Capabilities, Staff Competency, and User Satisfaction

9

DRIVERS OF WORLD-CLASS TESTING

DESIRED RESULTS

& % /25?
] 2
P O K 2,
S P S %, %,
e Q & 7. 0
2 s S, 2%,
%, 2 < % %
% % % 2
Q, %
S %,
¥ G World-Class
. S - Testing
& <& é\o O
N & & &
C & S >
) > » N
& & &
> < < &
N X 2 A&
(o> <& N

Figure 1-3 Overview of the testing environment.

Software testing organizations can use the results of this assessment in any one of

the following three ways:

1. To determine their current testing environmental status versus the environment
of a world-class testing organization. The responses to the items address will
indicate an organization’s strengths and weaknesses compared to the environ-

ment of a world-class testing organization.

2. To develop the goal/objectives to accomplish becoming a world-class testing
organization. QAI’s world-class criteria indicate a profile of the environment of
a world-class testing organization. Achieving those objectives can lead you to
become a more effective software testing organization.

3. To develop an improvement plan.

By doing the assessment, you will develop a Footprint Chart that shows where
improvement is needed. Those criteria in which you are deficient become the means
for improving the environment of your software testing organization.

Implementation Procedures

This practice involves the following four tasks:

m Build the assessment team.
m Complete the assessment questionnaires.
m Build the footprint chart.

m Assess the results.

10

Chapter 1

Building the Assessment Team

The assessment team should combine people who in totality possess the knowledge of
how your organization manages software testing. Before the team is established, the
areas to address should be reviewed to determine the makeup of the team. It is recom-
mended that a matrix be prepared with the seven assessment criteria on one dimension
and the recommended assessment team on the other. The matrix should indicate which
assessment team member is knowledgeable about each of the seven assessment criteria.

Once all seven criteria have been associated with an assessment team member, it can
be concluded that the team is adequate to perform the assessment.

Completing the Assessment Questionnaire
The assessment questionnaire in Work Paper 1-1 consists of eight categories, with five
items to address for each category. A Yes or No response should be made, as follows:
m A Yes response means all of the following;:
m (riteria items are documented and in place.
m Criteria items are understood by testers.
m (Criteria items are widely used, where applicable.

m (riteria items have produced some possible results.

m A No response means any of the following:

m No formal item in place.

m (Criteria items are applied differently for different test situations.
m No consistency as to when used or used very seldom.
-

No tangible results were produced.

The assessment team should read aloud each item and then discuss how that item is
addressed in their testing environment. The results should be recorded on Work Paper
1-1. The assessment team may also wish to record comments that clarify the response
and/or to provide insight in how that area may be improved.

Building the Footprint Chart

For this task, you should transcribe the results of Work Paper 1-1 onto Work Paper 1-2.
To do so, total the number of Yes responses for each criterion. Then place a dot on Work
Paper 1-2 on the line representing the number of Yes responses. For example, if you have
three Yes responses for test training, you should place a dot on the test training line at the
intersection of the line representing three Yes responses. A dot should be marked on the
line representing all seven criteria for the number of Yes responses. Then connect the dots
with a line, resulting in what is called a “footprint” of the status of your testing environ-
ment versus the environment of a world-class testing organization.

Assessing Capabilities, Staff Competency, and User Satisfaction

Assessing the Results

You should make the following two assessments regarding the footprint developed on

the Work Paper 1-2:

Test Environment Planning

Test Quality
Control

1. Assess the status of each criteria versus what that criteria should be in the

world-class testing environment. To do this, you need to look at the number of
Yes responses you have recorded for each criterion versus a world-class organi-
zation, which would have five Yes responses. For example, three Yes responses
for test training would indicate that improvements could be made in your test
training process. The two items that received No responses are indications of
where improvements are needed to move your test training activities to a
world-class level.

. Interpret your testing environment footprint chart. The footprint in your
Work Paper 1-2 provides an overview of your testing environment. Given the
footprint, your assessment team should attempt to draw some conclusions
about your testing environment. Three examples are given to help in drawing
these conclusions, as shown in Figures 1-4, 1-5, and 1-6.

Management Support for Test
5
4 Use of Test Processes

Test Tools

4

User Satisfaction Test Training

with Test

Test Measurement

Figure 1-4 Example of a software testing organization using a test as a part of
development.

12 Chapter 1

Management Support for Test
5
Test Environment Planning 4 Use of Test Processes

3 Y

Test Quality Test Tools
Control

N

User Satisfaction Test Training

with Test

Test Measurement

Figure 1-5 Example of a testing organization using, but not enforcing, the test process.

Management Support for Test

5
Test Environment Planning 4 Use of Test Processes

2

Test Quality Test Tools
Control

User Satisfaction Test Training

with Test

Test Measurement

Figure 1-6 Example of a testing organization practicing testing as an art.

Assessing Capabilities, Staff Competency, and User Satisfaction

13

Verifying the Assessment

The following list of questions, if responded to positively, would indicate that the
assessment has been performed correctly:

1.

Does the assessment team comprise the knowledge needed to answer all of the
items to address within the seven criteria?

Are the individual assessors free from any bias that would cause them not to
provide proper responses to the items to address?

Was there general consensus among the assessment team to the response for
each item to address?

Are the items to address appropriate for your testing organization?

5. Have the items to address been properly totaled and posted to the Footprint

Chart Work Paper?

Does the assessment team believe the Footprint Chart is representative of your
testing environment?

Does your assessment team believe that if they improve the items to address,
which have No responses, the testing organization will become more effective?

Does your organization believe that the overall assessment made is representa-
tive of your environment?

Assessment 2: Assessing the Capabilities
of Your Existing Test Processes

To assess the capabilities of your existing test processes, follow the same procedure that
you used to assess your test environment. Note that you should use the same team for
both assessments. The only change you will need is to substitute self-assessment ques-
tionnaires in assessing the test environment process with the self-assessment question-
naires for assessing the test processes included in this section.

The assessment of test processes will be divided into the following seven categories:

Preparing for a software testing project

Conducting test planning

Executing the test plan

Conducting acceptance testing

Analyzing test results and preparing reports

Testing the installation of software

Post-test analysis

Note that these seven categories of test processes correspond to a seven-step soft-
ware testing process presented in Part 3 of this book. Thus, each assessment will help

14

Chapter 1

you determine your strengths and weaknesses in each of the seven steps of the pro-
posed software testing process.

To conduct this self-assessment, answer the questionnaire in Work Paper 1-3 and
post your results to Work Paper 1-4, as described in the preceding section.

Assessment 3: Assessing the Competency of Your Testers

This practice will enable you to assess your testing competencies against the ten skill
categories in the Common Body of Knowledge (CBOK) for the Certified Software
Tester (CSTE) certificate. At the conclusion of the assessment, you will develop a Foot-
print Chart that shows your competencies against the skill categories needed to
become a CSTE. You can use the results to design a program for improving your per-
sonal test competencies.

Figure 1-7 shows a cause-effect diagram indicating the areas of competency assess-
ment. In the diagram these are called the drivers that result in becoming a fully com-
petent software tester. The drivers are, in fact, the ten CBOK skill categories.

Implementation Procedures

This practice involves performing the following four tasks:
Understand the CSTE CBOK.
Complete the assessment questionnaires.

Build the footprint chart.

L e

Assess the results.

DRIVERS OF TESTING COMPETENCY DESIRED RESULTS
& J
% %) % %
<, %.. S o %
% 2 Ky % 2
2 o 2, N <
& s > 2 %
Z. 7
% Ky 2 % %
%) 2 2 S 7o)
% % $ 2 <
> 3 %,
Fully Competent
S ~ Tester
R 5 >
o o° *> & s\"w
g W \o\\ O g 2 f S
O Ng o 2
o SQ\) o R 3
oN R oW @0\} “;0
@ p}?“ o>

Figure 1-7 Test competency cause-effect diagram.

Assessing Capabilities, Staff Competency, and User Satisfaction

15

Understanding the CSTE CBOK

Before you can effectively evaluate your software test competencies, you need to under-
stand the 2006 CSTE CBOK. The final version of the 2006 CSTE CBOK is available
through the Software Certification Organization. The discussion draft version of the 2006
CSTE CBOK is included in Chapter 5 as a detailed skill-assessment questionnaire. This
step requires you to read through the CBOK and to obtain clarifications of the material as
necessary. The best source for these clarifications is the CSTE CBOK study guide, which
is available from the Quality Assurance Institute (www.QAIworldwide.org).

Completing the Assessment Questionnaires

The assessment questionnaire in Work Paper 1-5 contains ten knowledge categories
with 5 items in each category, for a total of 50 items to assess. For each item, a Yes or No
response should be made. The meanings of the Yes and No responses are as follows:

m A Yes response means all of the following:

m You have had formal training, experience, or self-study supporting this skill
item.

m You have actively used the skill in your personal or work life.
m You have accomplished some positive result using this skill item.
m A No response means any of the following:
m You do not understand the theory and concepts supporting the skill item.
m You have never used the skill item in a personal or work situation.

= You have used the skill item but you have never achieved any positive
results.

Prior to answering each question, you should think through the meaning of the
question. This may require referring back to the CSTE study guide. Using the Yes/No
response criteria, you need to come to a consensus on whether a Yes/No response
should be indicated for the skill item. The result of your assessment should be recorded
on the appropriate questionnaire.

You need to progress sequentially through the self-assessment questionnaires. Note
that you may wish to make notes on the questionnaire to clarify your response or to
indicate ideas on how you could improve your competency in that skill item.

Building the Footprint Chart

To build the footprint chart, transcribe the results of Work Paper 1-5 onto Work Paper
1-6. To do so, total the number of Yes responses for each of the ten knowledge cate-
gories. Then place a dot on Work Paper 1-6 on the lines corresponding to the knowl-
edge category. For example, if you have three Yes responses for the Test Planning
category, you should place a dot on the Test Planning line at the intersection of the line
representing the three Yes responses. After you have placed all ten dots, draw a line to
connect them. This line, called a footprint, represents the status of your testing compe-
tencies versus those specified in the CSTE CBOK.

16

Chapter 1

Assessing the Results

You should make the following two assessments regarding the footprint you devel-
oped on Work Paper 1-6:

1. Compare your results for each knowledge category versus what the knowl-
edge category should be as indicated in the CSTE CBOK. Any rating less than
five Yes responses indicates a potential area of improvement in that knowledge
category. An analysis of the CBOK knowledge categories will be helpful in
determining where to focus improvement, as will studying the CSTE guide to
identify areas for potential improvement.

2. Compare your testing competencies against your current job responsibilities.
The footprint provides an overview of your current competencies. Using your
current job description, develop another footprint, which you believe is needed
to achieve your current job responsibilities. Any deficiencies should be your
first objective for improvement; your second for improvement would be to
achieve the skill competencies needed to become a CSTE.

Verifying the Assessment

A positive response to the following questions indicates that you have correctly per-
formed the competency assessment: (Note: Any negative response to the following five
questions would reduce the value in using this self-assessment to measure an individ-
ual tester’s competency.)

1. Do you have enough knowledge of the CSTE CBOK to understand the assess-
ment questions?

2. Do you understand the skills required for each of the 50 assessment items in
the questionnaires?

3. Do you understand the Yes and No response criteria, and have you used them
in developing the competency assessment?

4. Do you believe the 50 assessment items fairly represent the competencies
needed to be fully effective in software testing?

5. Do you believe that the 2006 CSTE CBOK used for this assessment is represen-
tative of your personal testing competencies?

Step 3: Develop an Improvement Plan

The objective of the action plan is to move software testing from where it is (the base-
line) to where it should be (the goal). There is no one way to develop this plan. Some
organizations want to implement the plan so it is on a “pay as you go basis.” Other
organizations are willing to invest in developing a significantly improved test process
knowing that the payback will come after the process is developed and deployed.

Assessing Capabilities, Staff Competency, and User Satisfaction

17

The practices outlined in this book correspond to the three self-assessment foot-
prints. If your organization is deficient in one or more components of the footprints,
refer to the related chapter in this book that will help you develop your improvement
plan, as shown in the following table:

ASSESSMENT
NUMBER ASSESSMENT CRITERIA CHAPTER

1 Test environment assessment:
Test Environment Planning
Management Support
User Satisfaction
Use of Process

Test Tools

aua b W N NN

Test Training
Test Measurements 11

Test Quality Control 2,23, 24

2 Test Process Assessment:
Preparing for a Software testing Project 6
Test Planning General 6,78

Planning for specialized areas:

The Impact of Software 14
Developmental Methodology When
Testing

Testing Client/Server Systems 15
Testing Rapid Application 16
Development

Testing the Adequacy of Internal 17
Control

Testing Off-the-Shelf Software 18
Testing in a Multi-Platform 19
Environment

Testing Security 20
Testing a Data Warehouse 21
Testing Web-based Systems 22

(continues)

18

Chapter 1

ASSESSMENT
NUMBER ASSESSMENT CRITERIA CHAPTER
Test Execution 9,10
Acceptance Testing 12
Test Analysis and Reporting 11
Testing Software Installation 12
Post Test Analysis 13
Improving the test processes 23,24
3 CSTE Knowledge Category
1 Software Testing Principles and 2 to 24
Concepts
2 Building the Test Environment 2to5
3 Managing the Test Project 6,7
4 Test Planning 8
5 Executing the Test Plan 9,10
6 Test Analysis and Reporting 11
7 User Acceptance Testing 12
8 Testing Software Developed by 18
Outside Organizations
9 Testing Software Controls and the 17,20
Adequacy of Security Procedures
10 Testing New Technologies 14, 15, 16, 19, 21, 22
Summary

This chapter described how to assess your software testing processes and the compe-
tency of your testers. The chapter also briefly addressed specialized testing responsi-
bilities and the need to improve your testing process and/or make your testing process

more agile.

The chapter was built around a simple, three-step improvement process: determin-
ing your desired software testing performance, measuring your current performance
against that performance goal, and developing a plan to move from where you are to a
world-class testing organization.

Assessing Capabilities, Staff Competency, and User Satisfaction 19

WORK PAPER 1-1 Self-Assessment on Software Testing Environment

ITEMS TO ADDRESS ON TEST
ENVIRONMENT PLANNING YES | NO COMMENTS

1. Does your IT organization have a policy on
software testing?

2. Does your software testing organization have a
test strategy?

3. Does your software testing organization have
software processes and tools to support that
testing strategy?

4. Does your software testing approach include both
erification and validation testing (i.e., testing the
software in both a static and executable mode)?

5. Does your testing strategy address the various
roles that testing can assume, and determine
which of those roles will be incorporated into
your organization'’s testing strategy (e.g., testing
user needs in addition to software specifications)?

ITEMS TO ADDRESS ON MANAGEMENT
SUPPORT YES | NO COMMENTS

1. Does management provide the resources
necessary (including calendar time) to
adequately train, plan, conduct, and evaluate
results for software testing assignments?

2. Are testers involved from the inception through
termination of software projects to ensure that
testing concerns are continuously addressed?

3. Does management allocate as many resources to
the test processes and tools as it does to the
development process and tools?

4. Does management spend as much time on test
planning and test execution as it does on
development planning and development
execution?

5. Is management knowledgeable and sufficiently
trained in test theory, processes, and tools to
effectively manage test planning and execution,
and understand and effectively act on test results?

(continues)

20 Chapter 1

WORK PAPER 1-1 (continued)

ITEMS TO ADDRESS ON THE USE OF TEST
PROCESSES YES | NO COMMENTS

1. Do testers follow processes to plan tests, prepare
test data, execute tests, and develop and report
test results?

2. Can testers correctly interpret documented test
processes so that the test procedures can be
followed as intended?

3. Do the processes provided for testing cover all
the activities that are needed to perform effective
testing?

4. Has a plan been developed and put in place to
mature the test processes so that they become
more effective and efficient and are performed
on time?

5. Do the owners/users of the test processes (the
testers) build the processes used for testing?

ITEMS TO ADDRESS ON TEST TOOLS YES | NO COMMENTS

1. Do testers use an automated tool to generate
and reuse test data?

2. Are test tools selected in a logical manner?

3. Can testers use test tools only after they have
received adequate training in how to use them?

4. s test tool usage specified in the test plan?

5. Has a process for obtaining assistance in using
test tools been established, and does it provide
testers with the needed instructional
information?

Assessing Capabilities, Staff Competency, and User Satisfaction 21

WORK PAPER 1-1 (continued)

ITEMS TO ADDRESS ON TEST TRAINING YES | NO COMMENTS

1. Does a career training plan for testers exist, and
is it in use to develop a tester from an unskilled
state to a master tester state?

2. Are testers adequately trained in test processes
before using those processes for testing?

3. Are testers trained in the theory of testing, risk
analysis, the various approaches to testing, and
so forth so that they understand “why” they
perform certain test tasks?

4. Are testers trained in statistics so that they
understand the level of confidence they can
provide a user by different test approaches and
how to interpret test results?

5. Are testers trained in how to measure process
performance, and do they use the results of that
measurement to improve the test processes?

ITEMS TO ADDRESS ON USER SATISFACTION | YES | NO COMMENTS

1. Do users get the information they need to track
test progress and assess results prior to placing
software into production?

2. Aresurveys conducted to determine user
satisfaction with test planning, test execution,
test results, communications, and so forth?

3. Do users participate in tests that determine
whether the software is acceptable for use?

4. Are users presented with a plan for testing, and
do they “approve” (i.e., agree) that if that plan
is followed, they will consider testing to be
satisfactory?

5. Are the user support activities (such as data entry,
output usage, terminal usage, manual usage,
and so forth) validated as part of testing?

(continues)

22 Chapter 1

WORK PAPER 1-1 (continued)

ITEMS TO ADDRESS TO TEST MEASUREMENT | YES | NO COMMENTS

1. Does a set of test measures and metrics exist,
and are they used to measure the efficiency and
effectiveness of software testing?

2. Has a measurement process been installed to
measure the efficiency of the test processes?

3. Is compliance to the budget and schedule
measured and variances addressed effectively?

4. Is tool usage measured to assess the contribution
received from automated testing?

5. Is the percentage of defects removed versus the
total defects eventually attributable to a
development phase measured?

ITEMS TO ADDRESS TO TEST QUALITY
CONTROL YES | NO COMMENTS

1. Are defects made by testers during testing
recorded and effectively addressed?

2. Is the test plan reviewed/inspected during/after
completion by peers for adequacy and
compliance to test standards?

3. Does the test plan include the procedures that
will be used to verify that the plan is executed
in accordance with the plan?

4. Are regular reports prepared that show the full
status of testing individual software systems?

5. Are the individual quality control reports
periodically summarized to show the efficiency
and effectiveness of testing in the entire
information services organization?

Assessing Capabilities, Staff Competency, and User Satisfaction

23

WORK PAPER 1-2 Test Environment Assessment Footprint Chart

Management Support for Test

Test Environment @ Use of Test Processes
Planning

Test Quality
Control

Test Tools

User Satisfaction Test Training
with Test

Test Measurement

24

Chapter 1

WORK PAPER 1-3 Self-Assessment on Test Processes

ITEMS TO ADDRESS ON PREPARING FOR A
SOFTWARE TESTING PROJECT

YES

NO

COMMENTS

Have the objectives and requirements for this
software system being developed been defined?

Are the requirements testable?

Have adequate time and resources been allotted
for both development and testing?

Has the process to be used for testing software
been defined?

Are the testers familiar with the methodology
that will be used to develop the software?

ITEMS TO ADDRESS ON TEST PLANNING

YES

NO

COMMENTS

Have the risks associated with the software been
defined?

Have the test objectives been defined?

Do the testers have a well-structured process to
follow to develop the test plan?

Have the constraints that will be imposed on
testing been defined?

Does the test plan include a matrix that relates
the test objectives to the tests that will be
conducted?

ITEMS TO ADDRESS ON TEST EXECUTION

YES

NO

COMMENTS

Is there a process to follow to design test data?

Will verification testing be performed during the
requirements phase of development?

Will verification testing be performed during
the design and build phases of development?

Is a process in place to record and track defects?

Will test execution be performed in accordance
with a plan included in the test plan?

Assessing Capabilities, Staff Competency, and User Satisfaction 25

WORK PAPER 1-3 (continued)

ITEMS TO ADDRESS ON ACCEPTANCE
TESTING YES | NO COMMENTS

1. Have the users defined acceptance criteria?

2. Do the users have a planning process to follow in
developing an acceptance test plan?

3. Do the users have the competencies needed to
conduct acceptance testing? (Note that the
competencies may include professional software
testers involved in acceptance testing)

4. Will acceptance testing simulate real-world
processing conditions?

5. Prior to acceptance testing, has the user
determined the actions that will be taken based
on the software meeting or not meeting the
acceptance test criteria?

ITEMS TO ADDRESS ON TEST ANALYSIS
AND REPORTING YES | NO COMMENTS

1. Will test reporting be tied to the testing plan as
defined in the test plan?

2. Will test reporting follow the test plan’s reporting
standards?

3. Will both interim and final test reports be issued?

4. Will reporting report back on status of the
function/test matrix included in the test plan?

5. Will the test report include an analysis and
recommendation by the software test team?

(continues)

26

Chapter 1

WORK PAPER 1-3 (continued)

ITEMS TO ADDRESS ON TESTINGSOFTWARE
INSTALLATION

YES

NO

COMMENTS

Does a software configuration plan exist and is
that plan effective and operational?

Does version control exist as part of the software
configuration management plan?

Does the installation plan include the
appropriate training and use of personnel?

Have all the interfaces to other software systems
been identified and addressed in the installation
process?

Will the installed software be tested to ensure its
correct prior to moving to an operational status?

ITEMS TO ADDRESS ON POST-TEST
ANALYSIS

YES

NO

COMMENTS

Will an analysis of the testing process be
conducted after the software is placed into an
operational status?

Will that analysis include the operational results
of the software?

Will that analysis identify good and bad testing
practices?

Does that analysis include a set-up matrix that
will be used to quantitatively assess the
effectiveness of testing?

Is there a process to incorporate the results of a
post-test analysis into a process to improve the
software testing process?

Assessing Capabilities, Staff Competency, and User Satisfaction

27

WORK PAPER 1-4 Test Process Assessment Footprint Chart

Test environment

Prepare for a software

testing project

Conducting test
planning

planning
Post-test
analysis
Testing
software
installation

Analyzing test results
and preparing reports

Executing the
test plan

Conducting
acceptance testing

28

Chapter 1

WORK PAPER 1-5 Self-Assessment on Tester Competency

ITEMS TO ADDRESS FOR SOFTWARE
TESTING PRINCIPLES AND CONCEPTS

YES

NO

COMMENTS

Are you familiar with the technical terms used to
describe various testing techniques, tools,
principles, concepts and activities?

Do you have knowledge of the different levels of
testing, such as unit testing?

Do you have an understanding of the multiple
roles of software testers, including testing against
specifications and testing to meet users’ needs?

Do you understand the “V” concept of testing?

Do you understand the tester’s workbench,
meaning that you understand the process by
which the testing task is performed?

ITEMS TO ADDRESS FOR BUILDING THE
TEST ENVIRONMENT

YES

NO

COMMENTS

Do you understand the concepts of policies,
standards and procedures and their integration
into test processes?

Do you understand how to select processes for
performing the test activities?

Do you understand how to adapt a test
environment to different software development
methodologies?

Do you understand a process for acquiring and
deploying test tools?

Do you understand what management must do
in order to create a work environment in which
testers are motivated to do the right thing in an
efficient and effective manner?

Assessing Capabilities, Staff Competency, and User Satisfaction 29

WORK PAPER 1-5 (continued)

ITEM TO ADDRESS FOR MANAGING THE
TEST PROJECT YES | NO COMMENTS

1. Do you possess the necessary communication
skills to effectively manage a test project?

2. Do you possess the personal effectiveness skills,
such as negotiation, to effectively manage the
test project?

3. Do you have the test administration skills, such
as budgeting and scheduling, to effectively
administer the test project?

4. Do you have the skills to ensure that the test
plan and processes used in the project will be in
line with the organizational goals, user business
objectives, release cycles, and different
development for methodologies?

5. Do you have the skills needed to develop
working relationships with users and other
stakeholders in the testing process?

ITEMS TO ADDRESS FOR TEST PLANNING YES | NO COMMENTS

1. Do you understand the methods for performing
risk analysis?

2. Do you know how to estimate the magnitude
of risks?

3. Do you know how to develop a test plan that
meets industry test plan standards?

4. Are you competent in software configuration
management, change management, and version
control?

5. Can you develop test objectives and acceptance
criteria for a project being tested?

(continues)

30 Chapter1

WORK PAPER 1-5 (continued)

ITEMS TO ADDRESS FOR EXECUTING THE
TEST PLAN YES | NO COMMENTS

1. Do you have the skills necessary to design test
data and test scripts?

2. Can you develop a test cycle strategy that will
determine the number of test cycles to be
conducted and what type of testing will occur
during these cycles?

3. Do you know the type of information that must
be recorded to effectively document test results?

4. Do you understand the process that testers
should follow in recording and monitoring the
resolution of defects?

5. Do you understand what is necessary to test
changes introduced to software testing after you
have started testing?

ITEMS TO ADDRESS FOR TEST ANALYSIS
AND REPORTING YES | NO COMMENTS

1. Do you understand the difference between a
measure and a metric?

2. Do you know how to report results of testing
that is consistent with the IT industry test
reporting standards?

3. Are you familiar with, and can you calculate the
more common metrics used in testing, such as
defect removal efficiency?

4. Do you know the type of information that must
be gathered during testing to enable test reports
to provide the information projects need to
assess their readiness to be placed into
operation, such as code coverage and
requirements coverage?

5. Do you have a knowledge of the tools needed
to develop effective test reports, such as
statistical analytical tools?

Assessing Capabilities, Staff Competency, and User Satisfaction 31

WORK PAPER 1-5 (continued)

ITEMS TO ADDRESS FOR USER ACCEPTANCE
TESTING YES | NO COMMENTS

1. Do you understand the differences between the
system test and acceptance test?

2. Can you create “use case” test conditions?

3. Do you understand that the user’s role and the
software tester’s role in acceptance testing?

4. Can you develop, in conjunction with users, an
acceptance test plan that is consistent with the
industry standards for acceptance test plan?

5. Do you know how to develop user acceptance
criteria that are verifiable?

ITEMS TO ADDRESS FOR TESTING
SOFTWARE DEVELOPED BY OUTSIDE
ORGANIZATIONS YES | NO COMMENTS

1. Do you know the difference between software
developed in-house and software developed by
outside organizations?

2. Are you familiar with the process that would
enable you to effectively test commercial
off-the-shelf (COTS) software?

3. Are you knowledgeable in a process that would
enable you to assess the software testing
capabilities of an outside organization being
considered for outsourcing?

4. Are you knowledgeable in the process that
would enable you to test new versions of
software acquired from outside organizations?

5. Do you know the risks/concerns associated with
acquiring COTS software?

(continues)

32

Chapter 1

WORK PAPER 1-5 (continued)

ITEMS TO ADDRESS FOR TESTING
SOFTWARE CONTROLS AND THE
ADEQUACY OF SECURITY PROCEDURES

YES

NO

COMMENTS

Are you knowledgeable in the vocabulary of
internal control and security?

Are you knowledgeable in the industry-accepted
model for internal control?

Are you knowledgeable in how to test systems of
internal control in software business applications?

Do you understand the relationship between risk
and control?

Are you knowledgeable in how to test the
adequacy of security in a business application
software system?

ITEMS TO ADDRESS FOR TESTING NEW
TECHNOLOGIES

YES

NO

COMMENTS

Do you understand how to test new application
architecture?

Do you know how to test new application
business models?

Do you know how to test new communication
methods?

Do you know how to test new hardware
technologies?

Do you know how to evaluate the effective
integration of new technologies into an
organization’s IT policies and procedures?

Assessing Capabilities, Staff Competency, and User Satisfaction 33

WORK PAPER 1-6 Test Process Assessment Footprint Chart

Test new Test principles
technologies

Test controls @ Build test
and security ' @ environment
@

Test software Manage test

developed outside -
A \ project
organization

O
sot

Execute test

Accept test Plan test

Analyze and
report test

_PART |
 Two
Building a Software

__ Testing Environment

Creating an Environment
Supportive of Software Testing

Senior IT management is responsible for creating an environment in which software
testing is effective and efficient. Only management can create that type of environ-
ment. If such an environment does not exist, the probability of dissatisfying project
personnel and software users is high.

Management controls all the attributes of the environment. They determine the
business that the organization performs, the physical location of the organization, the
layout of the office for testers, which hardware and operating system software will be
used, and which software projects will be developed. In addition, management hires
the testers, determines the type of training they will receive, and approves the testing
processes and tools. How testers are motivated, rewarded, and satisfied with their
work tasks is also under management’s control.

This chapter focuses on management’s role in creating an environment conducive to
software testing by addressing the following topics:

m Management'’s risk appetite for ineffective software

m The role management assigns to testing

The policy for testing

The type of support management provides for software testing

The resources allocated for testing

The processes and tools that will be used for testing

37

38

Chapter 2

Minimizing Risks

The primary objective of software testing is to minimize operational risk by identifying
defects prior to the software being placed into operation.

Risk Appetite for Software Quality

A risk appetite is the amount of risk that management is willing to take so that the soft-
ware placed into operations will be risk-free. Figure 2-1 illustrates the two gaps that
can cause customers and users to be dissatisfied: a specifications gap and a needs gap.

The IT project group defines the specifications for building software. The project
objective is to implement the specifications as documented by the IT project group and
agreed to by the customer /user. If they fail to deliver the specifications, or deliver them
in an incomplete and inaccurate manner, a specifications gap results.

The second gap is a needs gap. This is the gap between what the customer of the
software needs and what was delivered. If the customer needs and the software speci-
fications were the same, there would be only one gap. However, because the process to
gather the software requirements is often defective, there are, in fact, two gaps.

Management’s risk appetite is the amount of gap that they are willing to accept.
Reasons that the gap might exist include tight schedules, limited budgets, inadequate
development and testing staff, and work processes that are prone to defects.

Software testers are a means that management can use to close both of these gaps.
The testers can determine whether the delivered software meets the specifications. The
testers can also determine whether both the specified and delivered software will meet
customer needs.

The testing environment to a large degree will enable software testers to perform a
role that will both identify early in the project potential gaps, and during the project
determine the magnitude of those gaps. However, to do this, management must create
an environment that enables the testers to fulfill these responsibilities.

Software
Needs
Needs Gap
SStfatrt of l Delivered
oftware T Software
Project

Specifications Gap

Software
Specifications

Figure 2-1 Closing the customer dissatisfaction gap.

Creating an Environment Supportive of Software Testing 39

Risks Associated with Implementing Specifications

There are many risks that, if not properly controlled, will result in missing, incomplete,
inaccurate specifications. The risk factors that can cause specifications not to be imple-
mented as specified include:

m Inadequate schedule and budget. If the testers do not have adequate time or
resources, they will not be able to test all the implemented specifications.

m Inadequate test processes. If the test processes are defective, the testers will
create defects as they conduct testing. Thus, even though they have performed
the process as specified, they will not be able to accomplish the tasks those test
processes were designed to achieve.

m Inadequate competency. Testers who do not know the basics of testing, who do
not know how to use the test processes provided them, and who are inade-
quately trained in the use of testing tools and techniques will not be able to
accomplish test objectives.

Faulty Software Design
The software problems that most commonly cause bad design decisions include:

m Designing software with incomplete or erroneous decision-making criteria.
Actions have been incorrect because the decision-making logic omitted factors
that should have been included. In other cases, decision-making criteria included
in the software were inappropriate, either at the time of design or later, because
of changed circumstances.

m Failing to program the software as intended by the customer (user) or
designer. This results in logic errors, often referred to as programming errors.

= Omitting needed edit checks for determining completeness of output data.
Critical data elements have been left blank on many input documents, and
because no checks were included, the applications processed the transactions
with incomplete data.

Data Problems
Common data input problems include:

m Incomplete data. Some input documents prepared by people omitted entries in
data elements that were critical to the application but were processed anyway.
The documents were not rejected when incomplete data was being used. In
other instances, data needed by the application that should have become part
of information technology (IT) files was not put into the system.

m Incorrect data. People have often unintentionally introduced incorrect data into
the IT system.

m Obsolete data. Data in the IT files became obsolete because of new circumstances.
The new data may have been available but was not entered into the computer.

40

Chapter 2

Risks Associated with Not Meeting Customer Needs

Meeting customers’ needs must be differentiated from implementing the documented
software specifications. One of the major problems in meeting needs is that the process
for documenting needs by the IT project leader is defective.

Let’s look at an example of how implementing the specification correctly will not
meet the customer’s needs. Let’s assume we built an order entry system in which some-
one can order the product wanted and the quantity of that product. That sounds like a
relatively simple specification to implement. However, associated with that is a user
need that each order represents what the customer actually wants. Suppose they
wanted Y but ordered X. The specification would be met, but the wrong product would
be shipped. If the order entry specification also stated that the IT customer wanted 98
percent of the orders to represent what their customer actually wanted, meeting cus-
tomer expectations would be better defined. Without that qualifier the customer would
expect 100 percent correct orders.

In this book, these qualifiers will be called “test factors.” In other publications, they
have been referred to as quality factors and quality attributes. We will describe these
test factors which become software risks.

While the test factors themselves are not risks, they are attributes of the software
that, if they are wanted, pose a risk to the success of the software, and thus constitute a
business risk. For example, if the software is not easy to use, the resulting processing
may be incorrect. The test process should use those test factors during test planning.
The definition of the test factors enables the test process to be logically constructed like
other parts of information services.

When stated in a positive manner, the test risks become the factors that need to be
considered in the development of the test strategy. See Figure 2-2 for factors and exam-
ples. The following list briefly describes the test factors:

m Correctness. Assurance that the data entered, processed, and outputted by the
application system is accurate and complete. Accuracy and completeness are
achieved through controls over transactions and data elements, which should
commence when a transaction is originated and conclude when the transaction
data has been used for its intended purpose.

m File integrity. Assurance that the data entered into the application system will
be returned unaltered. The file integrity procedures ensure that the right file is
used and that the data on the file and the sequence in which the data is stored
and retrieved is correct.

m Authorization. Assurance that data is processed in accordance with the intents
of management. In an application system, there is both general and specific
authorization for the processing of transactions. General authorization governs
the authority to conduct different types of business, whereas specific authoriza-
tion provides the authority to perform a specific act.

m Audit trail. The capability to substantiate the processing that has occurred. The
processing of data can be supported through the retention of sufficient eviden-
tial matter to substantiate the accuracy, completeness, timeliness, and autho-
rization of data. The process of saving the supporting evidential matter is
frequently called an audit trail.

Creating an Environment Supportive of Software Testing

41

Continuity of processing. The ability to sustain processing in the event prob-
lems occur. Continuity of processing ensures that the necessary procedures and
backup information are available to recover operations should integrity be lost.
Continuity of processing includes the timeliness of recovery operations and the
ability to maintain processing periods when the computer is inoperable.

Service levels. Assurance that the desired results will be available within a
time frame acceptable to the user. To achieve the desired service level, it is nec-
essary to match user requirements with available resources. Resources include
input/output capabilities, communication facilities, processing, and systems
software capabilities.

Access control. Assurance that the application system resources will be pro-
tected against accidental and intentional modification, destruction, misuse, and
disclosure. The security procedure is the totality of the steps taken to ensure the
integrity of application data and programs from unintentional and unautho-
rized acts.

Compliance. Assurance that the system is designed in accordance with organi-
zational strategy, policies, procedures, and standards. These requirements need
to be identified, implemented, and maintained in conjunction with other appli-
cation requirements.

Reliability. Assurance that the application will perform its intended function
with the required precision over an extended period of time. The correctness of
processing deals with the ability of the system to process valid transactions cor-
rectly, while reliability relates to the system’s being able to perform correctly
over an extended period of time when placed into production.

Ease of use. The extent of effort required to learn, operate, prepare input for,
and interpret output from the system. This test factor deals with the usability of
the system to the people interfacing with the application system.

Maintainability. The effort required to locate and fix an error in an operational
system. Error is used in the broad context to mean both a defect in the system
and a misinterpretation of user requirements.

Portability. The effort required to transfer a program from one hardware con-
figuration and/or software system environment to another. The effort includes
data conversion, program changes, operating system, and documentation
changes.

Coupling. The effort required to interconnect components within an application
system and with all other application systems in their processing environment.

Performance. The amount of computing resources and code a system requires
to perform its stated functions. Performance includes both the manual and
automated segments involved in fulfilling system functions.

Ease of operation. The amount of effort required to integrate the system into the
operating environment and then to operate the application system. The proce-
dures can be both manual and automated.

42 Chapter 2

TEST FACTOR EXAMPLE

Correctness Assurance that:
 Products are priced correctly on invoices
 Gross pay is properly calculated
* Inventory-on-hand balances are correctly accumulated

Authorization Assurance that:
¢ Price overrides are authorized by management
+ Credits for product returns have been approved by
management
« Employee overtime pay is authorized by the employee’s
supervisor

File integrity Assurance that:
+ The amounts in the detail records of a file support the control
totals
« Customer addresses are correct
« Employee pay rates are correct

Audit trail Assurance that:
« Employee gross pay can be substantiated by supporting
documentation
« Sales tax paid to a specific state can be substantiated by the
supporting invoices
« Payments made to vendors can be substantiated should the
vendor disavow receiving the payment

Continuity of Assurance that:
processing + Banking transactions can continue if computer becomes
inoperational
+ Recovery of an online system can occur within the
predetermined tolerances

Service levels Assurance that:
« Response time in an online system is within the time span
tolerance
+ Application workload can be completed in accordance with
the application schedule
+ Changes to the system can be incorporated within the agreed
upon schedule

Access control Assurance that:
« Programmers will not be given access to data
 Access will be restricted to predetermined system resources
+ Automated access mechanisms will be current

Compliance Assurance that:
+ Information services standards are complied with
+ System development strategy is followed
 System is developed in accordance with budgets and schedules

Figure 2-2 Test factor examples.

Creating an Environment Supportive of Software Testing 43

TEST FACTOR EXAMPLE

Reliability Assurance that:
» Users can enter the correct information on a day-to-day basis
» Errors can be correctly reprocessed
» Appropriate action will be taken on system reports

Ease of use Assurance that:
+ Input forms minimize input errors
* Flow of work will be optimized in order to process work quickly
» Reporting procedures will be written in easy-to-understand
terminology

Maintainable Assurance that:
» Program documentation will be up-to-date
» Program segments will point to other segments that need to
be changed concurrently with that segment
+ Segments of programs will be identified with appropriate
identifiers

Portable Assurance that:
» Computer program will only use common language features
+ System will be hardware independent
+ System will be independent of system software special
features

Coupling Assurance that:
+ Segments in one application requiring concurrent changes in
other applications will be properly identified
» Common documentation will be up-to-date
» Changes will be coordinated

Performance Assurance that:
+ System is completed within time and budget constraints
+ System achieves performance acceptance criteria
+ Hardware and software usage is optimized

Ease of Assurance that:
operations + Operation documentation is up-to-date
» Operators are trained in any special application operating
procedures

+ Correct version of programs run in production

Figure 2-2 (continued)

Developing a Role for Software Testers

Previously, this chapter recognized two customer dissatisfaction gaps, or two classes of
risk-associated implementing software. Also discussed were many of the specific risks
associated with these two gaps.

44

Chapter 2

Management needs to evaluate these risks and determine their level of risk appetite.
For example, is management willing to accept the risk of unmaintainable software? If
not, management should take action to minimize that risk. An obvious action is to
develop maintenance standards. Another obvious action is to test the software to
ensure its maintainability. Implicit in this example is a definition of maintainability.
Does it mean that with unlimited effort, the software can be changed? Or, does it mean
a change to an internal table can be done within one hour, a minor specification change
can be done within four hours, and so forth?

The role of all software testing groups is to validate whether the documented speci-
fications have been implemented as specified. Additional roles that might be assigned
to software testers include the following:

m Testing for all or part of the test factors. When establishing the software test-
ing role, management will want to accept some test factors for incorporating
into the software tester’s role such as testing for ease of use, and exclude others
such as operational performance of the software. In other words, management
may decide they can live with inefficient software but cannot live with difficult
to use processes.

m Ensuring that the documented specifications meet the true needs of the
customer. Testers can attempt to verify that the documented specifications
are in fact the true needs of the customer. For example, they might initiate a
requirements review as a means of verifying the completeness of the defined
specifications.

m Improving the software testing process. Testers can use the analysis of their
testing to identify ways to improve testing.

m Improving the developmental test process. Testers can use their experience in
testing to make recommendations on how the software development process
could be improved.

m Participating in acceptance testing. Testers can use their software testing
expertise to help the users of the software systems develop and implement
acceptance testing plans that will determine whether the completed software
meets the operational needs of the users.

m Recommending changes to the software system. In developing and conduct-
ing software tests, testers may identify better ways of implementing the docu-
mented specifications.

m Evaluating the adequacy of the system of controls within the software sys-
tem. There are two components of a software system: the component that does
the specified work and the component that checks that the specified work was
performed correctly. The latter component is referred to as the “system of
internal control within the software system.” Testers can evaluate whether
those controls are adequate to reduce the risks for which they were designed
to minimize.

Creating an Environment Supportive of Software Testing

45

Management needs to clearly establish the role for software testers in their IT orga-
nization. Some IT managers want a limited role for software testers, whereas others
want an expanded role. Also included in a decision of the role of software testers is
whether they will be independent of the developmental project or part of the develop-
mental project.

Writing a Policy for Software Testing

A software testing policy serves two purposes. First, it is the basis for defining what
software testers will include in the test processes. Second, it explains to outside parties,
such as organizational management, IT customers and users, as well as project person-
nel, the role and responsibilities of software testing.

Criteria for a Testing Policy

A testing policy is management’s definition of testing for a department (see Figure 2-3).
A testing policy involves the following four criteria:

m Definition of testing. A brief but clear definition of testing.

m Testing system. The method through which testing will be achieved and
enforced.

m Evaluation. How information services management will measure and evaluate
testing.

m Standards. The standards against which testing will be measured.

Good testing does not just happen, it must be planned; and a testing policy should
be the cornerstone of that plan. Figure 2-3 is a simplistic testing policy that an IT
department could adopt. A good practice is for management to establish the testing
policy for the IT department, have all members of IT management sign that policy as
their endorsement and intention to enforce that testing policy, and then prominently
display that endorsed policy where everyone in the IT department can see it.

IT management normally assumes that their staff understands the testing function
and what management wants from testing. Exactly the opposite is typically true. Testing
often is not clearly defined, nor is management’s intent made known regarding their
desire for the type and extent of testing.

IT departments frequently adopt testing tools such as a test data generator, make the
system programmer/analyst aware of those testing tools, and then leave it to the discre-
tion of the staff how testing is to occur and to what extent. In fact, many “anti-testing”
messages may be indirectly transmitted from management to staff. For example, pres-
sure to get projects done on time and within budget is an anti-testing message from
management. The message says, “I don’t care how you get the system done, but get it
done on time and within budget,” which translates to the average systems analyst/
programmer as “Get it in on time even if it isn’t tested.”

46

Chapter 2

TESTING POLICY
ABC INFORMATION TECHNOLOGY DEPARTMENT

TESTING DEFINITION

Determine the validity of the computer solution to a business problem.
TESTING SYSTEM

Develop and execute a test plan in accordance with departmental procedures
and user requirements.

MEASUREMENT OF TESTING

Calculate the cost of correcting defects not discovered during testing.
TESTING STANDARDS

Allow only one defect per 250 executable program statements.
Philip. Jones

Stigabeth, Charnay

Max Harntman

Figure 2-3 Testing policy.

Methods for Establishing a Testing Policy
The following three methods can be used to establish a testing policy:

1. Management directive. One or more senior IT managers write the policy. They
determine what they want from testing, document that into a policy, and issue
it to the department. This is an economical and effective method to write a test-
ing policy; the potential disadvantage is that it is not an organizational policy,
but rather the policy of IT management.

2. Information services consensus policy. IT management convenes a group of
the more senior and respected individuals in the department to jointly develop
a policy. While senior management must have the responsibility for accepting
and issuing the policy, the development of the policy is representative of the
thinking of all the IT department, rather than just senior management. The
advantage of this approach is that it involves the key members of the IT depart-
ment. Because of this participation, staff is encouraged to follow the policy. The
disadvantage is that it is an IT policy and not an organizational policy.

Creating an Environment Supportive of Software Testing 47

3. Users’ meeting. Key members of user management meet in conjunction with
the IT department to jointly develop a testing policy. Again, IT management
has the final responsibility for the policy, but the actual policy is developed
using people from all major areas of the organization. The advantage of this
approach is that it is a true organizational policy and involves all of those areas
with an interest in testing. The disadvantage is that it takes time to follow this
approach, and a policy might be developed that the IT department is obligated
to accept because it is a consensus policy and not the type of policy that IT itself
would have written.

Testing is an organizational responsibility. It is the recommendation of the author
that a user committee be convened to develop a testing policy. This meeting serves the
following purposes:

m]t permits all involved parties to participate in the development of a testing
policy.

m]t is an educational process where users understand the options and costs asso-
ciated with testing.

m]t clearly establishes for all involved departments that testing is an organiza-
tional responsibility and not just an IT responsibility.

Economics of Testing

One information services manager described testing in the following manner: “Too lit-
tle testing is a crime, but too much testing is a sin.” The risk of under-testing is directly
translated into system defects present in the production environment. The risk of over-
testing is the unnecessary use of valuable resources in testing computer systems that
have no flaws, or so few flaws that the cost of testing far exceeds the value of detecting
the system defects.

Effective testing is conducted throughout the system development life cycle (SDLC).
The SDLC represents the activities that must occur to build software, and the sequence
in which those activities must occur.

Most of the problems associated with testing occur from one of the following causes:

Failing to define testing objectives
Testing at the wrong phase in the life cycle

Using ineffective testing techniques

The cost-effectiveness of testing is illustrated in Figure 2-4 as a testing cost curve. As
the cost of testing increases, the number of undetected defects decreases. The left side
of the illustration represents an under-test situation in which the cost of testing is less
than the resultant loss from undetected defects. At some point, the two lines cross and an
over-test condition begins. In this situation, the cost of testing to uncover defects exceeds
the losses from those defects. A cost-effective perspective means testing until the opti-
mum point is reached, which is the point where the cost of testing no longer exceeds the
value received from the defects uncovered.

48 Chapter 2

OPTIMUM
NUMBER OF TEST COST OF

DEFECTS TESTING

QUANTITY

EXTENT OF TESTING
Figure 2-4 Testing cost curve.

Few organizations have established a basis to measure the effectiveness of testing.
This makes it difficult for the individual systems analyst/programmer to determine
the cost-effectiveness of testing. Without testing standards, the effectiveness of the
process cannot be evaluated in sufficient detail to enable the process to be measured
and improved.

The use of a standardized testing methodology provides the opportunity for a cause
and effect relationship to be determined. In other words, the effect of a change in the
methodology can be evaluated to determine whether that effect resulted in a smaller or
larger number of defects. The establishment of this relationship is an essential step in
improving the test process.

The objective of this book is to explain how to develop a testing methodology that
enables an optimum cost-effective process to be used. The cost-effectiveness of a test-
ing process can be determined only when the effect of that process can be measured.
When the process can be measured, it can be adjusted to improve the cost-effectiveness
of the test process for the organization.

Studies at IBM demonstrated that an application system built by an immature sys-
tem development process will produce 60 errors (defects). These studies also showed
that testing prior to coding is 50 percent effective in detecting errors, and after coding,
80 percent effective. This study and others show that it is at least 10 times as costly to
correct an error after coding as before, and 100 times as costly to correct a production
error.

These facts are illustrated in Figure 2-5 for a hypothetical system with 1,000 lines of
source code. A normal SDLC test process is shown on the left in which testing occurs
only after coding. In this example, all 60 errors remain after coding for testing, which
detects 48 errors (60 times 80 percent equals 48) at an average cost ten times as great as

Creating an Environment Supportive of Software Testing

49

those detected prior to coding, resulting in a cost of 480 units. To that, we must add
1,200 units of cost representing the 12 remaining errors to be detected during produc-
tion at a cost of 100 units each. The net test cost is 1,680 units. Using life-cycle testing,
this can be reduced to 582 units or only one-third of the normal SDLC test concept cost
(illustrated on the right side of Figure 2-5).

NORMAL SDLC SDLC TESTING
ACCUMULATED ACCUMULATED ACCUMULATED ACCUMULATED
TEST ERRORS/1,000 ERRORS/1,000 TEST
COosT LINES CODE LINES CODE COosT
0 20 REQUIREMENTS 10 10

20 ERRORS

Cost Detect
=1

0 40 DESIGN 15 25
20 ERRORS

Cost Detect
=1

0 60 PROGRAM 18 42
20 ERRORS

Cost Detect
=1

TEST
480 12 80% ERROR 4 182
REDUCTION

Cost Detect
=10

1,680 0 MAINTENANCE 0 582
“0"” ERRORS

Cost Detect
=100

Figure 2-5 Economics of SDLC testing.

50

Chapter 2

Testing—An Organizational Issue

Testing software systems is not just an IT issue, but rather is an organizational issue. The
IT department can verify that the system structure functions correctly and that the exe-
cutable system performs the requirements as IT understands those requirements, but the
IT department cannot test to determine that the executable system satisfies the needs of
the organization.

Effective testing must be done by a team comprised of information services profes-
sionals and users. Also, vendors of software may not be able, or may not want, to have
users testing their systems during the developmental process. Again, in these instances,
a professional test group can represent the users. The test group is known by different
names, including IT testing, quality control, quality assurance, and inspectors.

The following technological developments are causing organizations to revise their
approach to testing:

m Integration. Technology is being more closely integrated into the day-to-day
business, such that the business cannot operate without computer technology.
For example, the airlines can take reservations only when their computer sys-
tems are operational.

m System chains. More and more computer systems are interconnected into
cycles of chains such that problems in one can cascade into and affect others.

m The domino effect. One problem condition, such as a wrong price or a pro-
gram defect, can cause hundreds or even thousands of similar errors within a
few minutes.

m Reliance on electronic evidence. With hard-copy documents being removed
from processing, the validity of the transactions is dependent upon the ade-
quacy of controls, and thus a control error may result in extensive losses.

m Outside users. Systems no longer belong to internal users, but rather to outside
users, making it difficult to identify a single organizational unit responsible for a
system.

The organizational approach to testing commences with a policy on testing com-
puter systems. The policy should be developed under the direction of the IT depart-
ment, but should represent the philosophy of the entire organization. Once the policy
has been established, then the procedures and the methods of testing can be developed
based upon the desires of management as expressed in the testing policy.

Management Support for Software Testing

Many IT organizations have called upon the Quality Assurance Institute (QAI) to
improve their software testing process. In conducting the initial investigation, the QAI
always asks the following questions:

Creating an Environment Supportive of Software Testing

m How much time does the senior IT manager spend on software development,
and how much time does the senior IT manager spend on software testing?
Experience has shown that in terms of developmental costs, 50 percent of the
cost is spent on developing and 50 percent is spent on testing and correcting
problems. Given these statistics, the senior IT manager should be spending
about 50 percent of his time on development and 50 percent of his time on test-
ing. If this ratio varies significantly (for example 80 percent on development
and 20 percent on testing), the tester has a clear message that their activity is
not as important as development.

m Are the pay grades of software developers the same pay grades as given to soft-
ware testers? Since development and testing consume an equal amount of IT
resources, it would seem logical that both developers and testers would have the
same pay grades. If not, it again indicates to software testers that they are not as
important as developers.

When testers feel this lack of management support, they lose motivation and inter-
est. Testers also recognize that if they want to improve their career opportunities they
should move to development and leave testing.

Management support for software testing is needed in the following areas:

m Allocation of resources. Adequate resources should be allotted to testers so
that they can have effective and efficient test processes and up-to-date test
tools.

m Training. Software testers need to be trained to improve their competency in
software testing, testing processes, and the use of testing tools.

m Motivation. Senior IT management should undertake activities that motivate
software testers. This is done by setting a “tone” at the top. For example, con-
stantly referring to the importance of testing in staff meeting, assuring that the
test schedule and budget will not be cut to compensate for developmental
overruns, and periodically talking with testers about their concerns and job
responsibilities.

m Rewards. Software testers should be rewarded for the work they do. A reward
can be a “Thank you” at the end of testing, a letter of commendation to the soft-
ware tester’s job file, lunch or other rewards with the boss, as well as financial
and promotion rewards.

m Walking the “testing” talk. This means that IT managers will take the time to
learn testing basics, will become involved in the acquisition of testing tools, sit
in on testing courses, and so forth. The goal should be to convince testers that
testing is an important component of IT services.

Building a Structured Approach to Software Testing

Traditionally, the SDLC places testing immediately prior to installation and maintenance
(see Figure 2-6). All too often, testing after coding is the only verification technique used

52

Chapter 2

to determine the adequacy of the system. When testing is constrained to a single phase
and confined to the latter stages of development, severe consequences can develop. It
is not unusual to hear of testing consuming 50 percent of the development budget. All
errors are costly, but the later in the SDLC the error is discovered, the more costly the
error. Indeed, an error discovered in the latter parts of the SDLC must be paid four dif-
ferent times. The first cost is developing the program erroneously, which may include
writing the wrong specifications, coding the system wrong, and documenting the sys-
tem improperly. Second, the system must be tested to detect the error. Third, the wrong
specifications and coding must be removed and the proper specifications, coding, and
documentation added. Fourth, the system must be retested to determine whether the
problem(s) have been corrected.

If information services has as its goal lower cost and higher quality systems, it must
not isolate verification to a single phase in the development process; rather, it must
incorporate verification into each phase of development. One of the most prevalent
and costly mistakes on systems development projects today is to defer the activity of
detecting and correcting problems until late in the project. A major justification for an
early verification activity is that many costly errors are made before coding begins.

Studies have shown that the majority of system errors occur in the design phase.
Figure 2-7 represents the results of numerous studies that show that approximately
two-thirds of all detected system errors can be attributed to errors made during the
design phase. This means that almost two-thirds of the errors must be specified and
coded into programs before they can be detected.

Table 2-1 presents the recommended testing process as a life cycle chart showing the
verification activities for each phase. The success of conducting verification through-
out the development cycle depends upon the existence of clearly defined and stated
products at each development stage. The more formal and precise the statement of the
development product, the more amenable it is to the analysis required to support ver-
ification. Many of the new system development methodologies encourage firm prod-
ucts even in the early development stages.

The following activities should be performed at each phase:

m Analyze the software documentation for internal testability and
adequacy.

m Generate test sets based on the software documentation at this phase.

REQUIRE- DESIGN PROGRAM TEST INSTALLATION MAINTENANCE
MENTS

Figure 2-6 Traditional software development life cycle.

Creating an Environment Supportive of Software Testing

53

CODING ERRORS
36%

ANALYSIS AND
DESIGN ERRORS
64%

Figure 2-7 Analysis and design errors are the most numerous.

In addition, the following should be performed during the design and program

phases:

m Determine that the software documentation is consistent with the software doc-

umentation produced during previous phases.

m Refine or redefine test sets generated earlier.

Table 2-1 Life Cycle Verification Activities

LIFE CYCLE PHASE VERIFICATION ACTIVITIES

Requirements m Determine verification approach

m Determine adequacy of requirements

m Generate functional test data

m Determine consistency of design with requirements
Design m Determine adequacy of design

m Generate structural and functional test data

m Determine consistency with design
Program m Determine adequacy of implementation

m Generate structural and functional test data for programs
Test m Test application system
Installation m Place tested system into production
Maintenance m Modify and retest

54

Chapter 2

The recommended test process involves testing in every phase of the life cycle. Dur-
ing the requirements phase, the emphasis is on validation to determine that the defined
requirements meet the needs of the organization. During the design and program
phases, the emphasis is on verification to ensure that the design and programs accom-
plish the defined requirements. During the test and installation phases, the emphasis is
on inspection to determine that the implemented system meets the system specification.
During the maintenance phase, the system should be retested to determine whether the
changes work as planned and to ensure that the unchanged portion continues to work
correctly.

Throughout the entire life cycle, neither development nor verification is a straight-
line activity. Modifications or corrections to the software at one phase will require
modifications or re-verification of software produced during previous phases.

Requirements

The verification activities performed during the requirements phase of software devel-
opment are extremely significant. The adequacy of the requirements must be thor-
oughly analyzed and initial test cases generated with the expected (correct) responses.
Developing scenarios of expected system use may help to determine the test data and
anticipated results. These tests will form the core of the final test set. Vague or
untestable requirements will leave the validity of the delivered product in doubt.
Requirements defined to later phases of development can be very costly. A determina-
tion of the importance of software quality attributes should be made at this stage. Both
product requirements and validation requirements should be established.

Design

Organization of the verification effort and test management activities should be closely
integrated with preliminary design. During the design phase, the general testing strat-
egy is formulated and a test plan is produced. If needed, an independent test team is
organized. A test schedule with observable milestones should be determined. At this
same time, the framework for test documentation should be established.

During the design phase, validation support tools should be acquired or developed
and the test procedures themselves should be produced. Test data to exercise the func-
tions introduced during the design process, as well as test cases based upon the struc-
ture of the system, should be generated. Thus, as the software development proceeds,
a more effective set of test cases is built.

In addition to test organization and the generation of test cases, the design itself
should be analyzed and examined for errors. Simulation can be used to verify proper-
ties of the system structures and subsystem interaction, design walkthroughs should
be used by the developers to verify the flow and logical structure of the system, while
design inspection should be performed by the test team. Areas of concern include
missing cases, faulty logic, module interface mismatches, data structure inconsisten-
cies, erroneous I/O assumptions, and user interface inadequacies. The detailed design

Creating an Environment Supportive of Software Testing

55

must prove to be internally coherent, complete, and consistent with the preliminary
design and requirements.

Program

Actual testing occurs during the program stage of development. Many testing tools
and techniques exist for this stage of system development. Code walkthrough and
code inspection are effective manual techniques. Static analysis techniques detect
errors by analyzing program characteristics such as data flow and language construct
usage. For programs of significant size, automated tools are required to perform this
analysis. Dynamic analysis, performed as the code actually executes, is used to deter-
mine test coverage through various instrumentation techniques. Formal verification or
proof techniques are used to provide further quality assurance.

Test

During the test process, careful control and management of test information is critical.
Test sets, test results, and test reports should be catalogued and stored in a database.
For all but very small systems, automated tools are required to do an adequate job—
the bookkeeping chores alone become too large to be handled manually. A test driver,
test data generation aids, test coverage tools, test results management aids, and report
generators are usually required.

Installation

The process of placing tested programs into production is an important phase nor-
mally executed within a narrow time span. Testing during this phase must ensure that
the correct versions of the program are placed into production, that data if changed or
added is correct, and that all involved parties know their new duties and can perform
them correctly.

Maintenance

More than 50 percent of a software system’s life cycle costs are spent on maintenance. As
the system is used, it is modified either to correct errors or to augment the original sys-
tem. After each modification, the system must be retested. Such retesting activity is
termed regression testing. The goal of regression testing is to minimize the cost of system
revalidation. Usually only those portions of the system impacted by the modifications
are retested. However, changes at any level may necessitate retesting, re-verifying, and
updating documentation at all levels below it. For example, a design change requires
design re-verification, unit retesting, and subsystem retesting. Test cases generated dur-
ing system development are reused or used after appropriate modifications. The quality
of the test documentation generated during system development and modified during
maintenance will affect the cost of regression testing. If test data cases have been cata-
logued and preserved, duplication of effort is minimized.

56

Chapter 2

Developing a Test Strategy

If IT management selects a structured approach to testing software, they need a strat-
egy to implement it. This strategy explains “what to do.” Testing tactics explain “how
to” implement the strategy.

The objective of testing is to reduce the risks inherent in computer systems. The strat-
egy must address the risks and present a process that can reduce those risks. The system
concerns or risks then establish the objectives for the test process. The two components
of the testing strategy are the test factors and the test phase, defined as follows:

m Test factor. The risk or issue that needs to be addressed as part of the test strat-
egy. The strategy will select those factors that need to be addressed in the test-
ing of a specific application system.

m Test phase. The phase of the SDLC in which testing will occur.

Not all test factors will be applicable to all software systems. The development team
will need to select and rank the test factors for the specific software system being
developed. Once selected and ranked, the strategy for testing will be partially defined.

The test phase will vary based on the testing methodology used. For example, the test
phases in a traditional SDLC methodology will be much different from the phases in a
rapid application development methodology.

Figure 2-8 illustrates a generic strategy, the one presented in this book. However,
this strategy should be customized for any specific software system. The applicable
test factors would be listed and ranked, and the phases of development would be listed
as the phases in which testing must occur.

You must perform the following four steps to develop a customized test strategy.
The test strategy can be represented as the test factor/test phase matrix, as illustrated
in Figure 2-8.

1. Select and rank test factors. The customers/key users of the system in con-
junction with the test team should select and rank the test factors. In most
instances, only three to seven factors will be needed. Statistically, if the key fac-
tors are selected and ranked, the other factors will normally be addressed in a
manner consistent with supporting the key factors. These should be listed in
the matrix in sequence from the most significant test factor to the least signifi-
cant. Rank your factors in sequence from the most to the least significant on
Work Paper 2-1. Specific test risks can be substituted for factors, or you can
expand the factors to describe risks in more detail.

2. Identify the system development phases. The project development team
should identify the phases of their development process. This is normally
obtained from the system development methodology. These phases should be
recorded in the test phase component of the matrix. Record these phases in the
test phase component of Work Paper 2-2, and then copy the appropriate test
factor from Work Paper 2-1 to Work Paper 2-2.

Creating an Environment Supportive of Software Testing 57

TEST
PHASE

TEST
FACTORS

REQUIREMENTS
INSTALLATION
MAINTENANCE

DESIGN
BUILD
TEST

Figure 2-8 Test factor/test phase matrix.

3. Identify the business risks associated with the system under development.
The developers, key users, customers, and test personnel should brainstorm
the risks associated with the software system. Most organizations have a brain-
storming technique, and it is appropriate for individuals to use the technique in
which they have had training and prior use. Using this technique, the risks
should be identified and agreed upon by the group. The risks should then be
ranked into high, medium, and low. This is a relational severity indicator,
meaning that one-third of all risks should be indicated as high; one-third,
medium; and one-third, low.

4. Place risks in the matrix. The risk team should determine the test phase in
which the risk needs to be addressed by the test team, and the test factor to
which the risk is associated. Take the example of a payroll system: If there were
a concern about compliance to federal and state payroll laws, the risk would be
the penalties associated with noncompliance. Assuming compliance was
picked as one of the significant test factors, the risk would be most prevalent
during the requirements phase. Thus, in the matrix, at the intersection between
the compliance test factor and the requirements phase, the risk of “penalties

58

Chapter 2

associated with noncompliance to federal and state payroll laws” should be
inserted. Note that this may be done by a reference number, cross-referencing
the risk. The risk would then have associated with it an H, M, or L, for high,
medium, or low risk, respectively.

Use Work Paper 2-1

Work Paper 2-1 enables you to make the most important factors your test specifications.
The Work Paper should be completed jointly by the project and test teams. Rank the 15
factors from 1 to 15, with 1 as the most important factor and 15 as the least. You can also
rank them as high, medium, or low. To use this tool correctly, five factors should be high,
five medium, and five low. Table 2-2 describes the fields in Work Paper 2-1.

Use Work Paper 2-2

Copy the test factors from Work Paper 2-1 to Work Paper 2-2 and list the most impor-
tant factor at the top and the least important factor at the bottom in the Test Factors col-
umn. Do not list any inconsequential test factors. Next, list the matching concerns in
the appropriate test phase column. In the Figure 2-9 example, if accuracy was your
highest test factor, the concern you’d list would be incomplete identification of all soft-
ware requiring Year 2000 date corrections. A detailed example of how to complete and
use this Work Paper follows. Table 2-3 describes the fields in Work Paper 2-2.

Table 2-2 Field Requirements

FIELD DESCRIPTION

Number A sequential number identifying the 15 test factors
described in this chapter.

Test Factor The 15 test factors described in this chapter.

Factor Rank Rank the most important test factors, ideally 1
through 15; but in practice, this has proven difficult.
As an alternative, pick the top five without ranking
them; for example, just indicate a check in the
Factor Ranked column. Or rank five of them high,
five medium, and five low in importance.

Ranking Rationale Explain why a particular test factor was ranked as
indicated. For example, if correctness was ranked as
the number 1 factor, the ranking rationale might
explain that outputs would be sent to governmental
agencies which have viewed incorrect reports
negatively.

Creating an Environment Supportive of Software Testing

59

Table 2-3 Field Requirements

FIIELD DESCRIPTION

Contains the factors ranked in importance. If the
testers ranked the factors 1-15, then the number 1
test factor would be first in this column and the
number 15 test factor would be last. However, if
five test factors were ranked as important, then
just those five test factors would be listed in this
column.

Test Factors

Test Phase The six most common test phases, as described in

the text.

In the horizontal column under each of the six test
phases, list the test concern together with the
strategy used to address that test concern. Figure
2-9 further describes documenting the test concerns
and test strategy.

Test Concerns

Test Factors Year 2000 Phase

(Ranked High

after 1/2/20007?)

government been
identified?

Test Strategy
Examine the
assessment document
to determine that
a risk regarding
transmission of tax
data has been
identified.

Test Strategy
Review the Y2K plan
to determine how,
and which, systems
will be modified to
ensure that tax data
can be transmitted
to the appropriate
governmental
agencies.

Test Strategy
Inspect the programs
that govern
transmission of tax
information to
determine whether
they were
appropriately
modified.

to Low)
Assessment Plan Implement Dynamic Test
Compliance Concern Concern Concern Concern
(Can tax Has tax Is there a tax trans- Was the plan Was the
information be transmission risk for | mission Y2K plan? implemented? implementation
transmitted our company and tested?

Test Strategy
Create a test, which
will transmit to
appropriate
government
agencies with
a year 2000 date.

Figure 2-9 Example of a complete test strategy matrix for a Year 2000 test strategy.

60

Chapter 2

Summary

Establishing the right environment for software testing is an essential component of an
effective and efficient software testing process. Senior IT management has the primary
responsibility for establishing an environment that is conducive to software testing. The
key component of the environment is the “tone” at the top established by management
regarding software testing. This tone includes management’s personal involvement in
software testing, how they motivate the software testing staff to perform the testing
activities, the effort they are willing to expend to ensure the testing staff has the necessary
competencies, and providing the resources needed to develop/acquire the software
testing process including tools. This chapter has emphasized management’s role and
responsibility in creating an environment for effective software testing.

Once management has established a “tone” at the top regarding software testing,
the remaining pieces of the environment need to be developed. Although there are
many components of the environment, the three major ones are:

m Software testing work processes
m Software testing tools

m A competent software testing staff

The following three chapters will address those three key components of the soft-
ware testing environment.

Creating an Environment Supportive of Software Testing

61

WORK PAPER 2-1 Test Factor/Risk Ranking

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Number A sequential number identifying the 15 test factors described in this chapter.
Test Factor The 15 test factors described in this chapter.

Factor Rank Rank the most important test factors, ideally 1 through 15; but in practice, this

has proven difficult. As an alternative, pick the top five without ranking them; for
example, just indicate a check in the Factor Rank column. Or rank five of them
high, five medium, and five low.

Ranking Rationale Explain why a particular test factor was ranked as indicated. For example, if
accuracy was ranked as the number 1 factor, the ranking rationale might explain
that outputs would be sent to governmental agencies that have viewed incorrect
reports negatively.

NUMBER TEST FACTOR FACTOR RANK RANKING RATIONALE
1 Accuracy
2 File Integrity
3 Authorization
4 Audit Trail
5 Processing Continuity
6 Service Levels
7 Access Control
8 Compliance
9 Reliability
10 Ease of Use
11 Ease of Maintenance
12 Portability
13 Coupling
14 Performance

15 Ease of Operation

62 Chapter 2

WORK PAPER 2-2 Test Factors/Test Phase/Test Concerns

TEST
PHASE

TEST
FACTORS
(RANKED
HIGH TO
LOW)

REQUIREMENTS

DESIGN

PROGRAM | TEST | INSTALLATION

MAINTAINENANCE

Factors or
Risks

Building the Software
Testing Process

The testing process is the means by which the test strategy is achieved. The team that
develops the testing process uses the test strategy as the requirements for the process.
Their task is to determine the tests and methods of performance needed to address the
risks that the test strategy identifies.

Following a test process has two significant advantages. First, the tester does not
have to determine the process to be used for software testing because that process
already exists. Second, when all testers follow the same process, they will develop bet-
ter means for testing. These means will be incorporated into the process by continually
improving the software testing process.

This chapter describes the construction of a workbench for building software. The
workbench illustrates both the “do” and the “check” procedures. The “do” procedures
are the test procedures, and the “check” procedures determine whether the “do” pro-
cedures were performed correctly. The chapter then identifies the considerations for
customizing a process for testing, as well as explains the need for a test process. Part
Three of this book details the seven steps proposed as a generic test process.

Software Testing Guidelines

Experience has shown there are six general software testing guidelines that, if followed,
can significantly improve software testing. These guidelines are the primary reason for
building the software testing process:

63

64

Chapter 3

1. Software testing should reduce software development risk. Risk is present
in all software development projects, and testing is a control that reduces
those risks.

2. Testing should be performed effectively. Testing should be performed in
a manner in which the maximum benefits are achieved from the software
testing efforts.

3. Testing should uncover defects. Ideally, at the conclusion of testing there
should be no defects in the software.

4. Testing should be performed using business logic. Money should not be
spent on testing unless it can be spent economically to reduce business risk. In
other words, it does not make business sense to spend more money on testing
than the losses that might occur from the business risk.

5. Testing should occur throughout the development life cycle. Testing is not a
phase, but rather a process. It begins when development begins and ends when
the software is no longer being used.

6. Testing should test both structure and function. Testing should test the func-
tional requirements to ensure they are correct, and test the adequacy of the soft-
ware structure to process those functional requirements in an effective and
efficient manner.

.m To learn how to customize the test process for a specific software
system, see the section “Customizing the Software-Testing Process” later in
this chapter.

Guideline #1: Testing Should Reduce
Software Development Risk

Senior IT executives need to develop their IT strategy. Strategic plans are converted
into business initiatives. The planning cycle comprising the plan-do components of the
plan-do-check-act (PDCA) cycle is easy to understand. From a senior IT executive’s
perspective, the check component must address business risk.

Risk is the probability that undesirable events will occur. These undesirable events
will prevent the organization from successfully implementing its business initiatives.
For example, there is the risk that the information used in making business decisions
will be incorrect or late. If the risk turns into reality and the information is late or incor-
rect, an erroneous business decision may result in a failed initiative.

Controls are the means an organization uses to minimize risk. Software testing is a
control that contributes to eliminating or minimizing risks; thus, senior executives rely
on controls such as software testing to assist them in fulfilling their business objectives.

The purpose of controls such as software testing is to provide information to manage-
ment so that they can better react to risky situations. For example, testing may indicate
that the system will be late or that there is a low probability that the information pro-
duced will be correct. Knowing this information, management can then make decisions

Building the Software Testing Process

65

to minimize that risk: Knowing that the project may be late, they could assign additional
personnel to speed up the software development effort.

Testers must understand that their role in a business is to evaluate risk and report
the results to management. Viewed from this perspective, testers must first ensure they
understand the business risk, and then develop test strategies focused on those risks.
The highest business risk should receive the most test resources, whereas the lowest
business risk should receive the fewest resources. This way, the testers are assured that
they are focusing on what is important to their management.

Guideline #2: Testing Should Be Performed Effectively

Effectiveness means getting the maximum benefit from minimum resources. The
process is well-defined. There should be little variance in the cost of performing the
task from tester to tester. If no well-defined process is in place, the cost variance for per-
forming a task between testers can vary significantly.

The object of the test process from an effective viewpoint is two-fold. First, processes
reduce variance by having the process performed in a consistent manner by each tester.
The second processes reduce variance through continuous process improvement. Once
variance is minimized, testers can perform those tests they say they will perform in the
timeframe and cost they say they can be performed in.

Guideline #3: Testing Should Uncover Defects

All testing focuses on discovering and eliminating defects or variances from what is
expected. There are two types of defects:

m Variance from specifications. A defect from the perspective of the builder of
the product.

= Variance from what is desired. A defect from a user’s (or customer’s) perspec-
tive. Testers need to identify both types of defects. Defects generally fall into
one of the following three categories:

m Wrong. The specifications have been implemented incorrectly. This defect is
a variance from what the customer/user specified.

m Missing. A specified or wanted requirement is not in the built product. This
can be a variance from specification, an indication that the specification was
not implemented, or a requirement of the customer identified during or
after the product was built.

m Extra. A requirement incorporated into the product was not specified. This
is always a variance from specifications, but may be an attribute desired by
the user of the product. However, it is considered a defect.

Defects Versus Failures

A defect found in the system being tested can be classified as wrong, missing, or extra. The
defect may be within the software or in the supporting documentation. While the defect
is a flaw in the system, it has no negative impact until it affects the operational system.

66

Chapter 3

A defect that causes an error in operation or negatively impacts a user/customer is
called a failure. The main concern with defects is that they will turn into failures. It is
the failure that damages the organization. Some defects never turn into failures. On the
other hand, a single defect can cause millions of failures.

Why Are Defects Hard to Find?

Some defects are easy to spot, whereas others are more subtle. There are at least two
reasons defects go undetected:

m Not looking. Tests often are not performed because a particular test condition
is unknown. Also, some parts of a system go untested because developers
assume software changes don’t affect them.

m Looking but not seeing. This is like losing your car keys only to discover they
were in plain sight the entire time. Sometimes developers become so familiar
with their system that they overlook details, which is why independent verifi-
cation and validation should be used to provide a fresh viewpoint.

Defects typically found in software systems are the results of the following
circumstances:

m IT improperly interprets requirements. Information technology (IT) staff mis-
interpret what the user wants, but correctly implement what the IT people
believe is wanted.

m The users specify the wrong requirements. The specifications given to IT staff
are erroneous.

m The requirements are incorrectly recorded. Information technology staff fails
to record the specifications properly.

m The design specifications are incorrect. The application system design does
not achieve the system requirements, but the design as specified is imple-
mented correctly.

m The program specifications are incorrect. The design specifications are incor-
rectly interpreted, making the program specifications inaccurate; however, it is
possible to properly code the program to achieve the specifications.

m There are errors in program coding. The program is not coded according to
the program specifications.

m There are data entry errors. Data entry staff incorrectly enter information into
the computers.

m There are testing errors. Tests either falsely detect an error or fail to detect one.

m There are mistakes in error correction. The implementation team makes errors
in implementing your solutions.

m The corrected condition causes another defect. In the process of correcting a
defect, the correction process itself institutes additional defects into the applica-
tion system.

Building the Software Testing Process

67

Usually, you can identify the test tactics for any test process easily; it’s estimating the
costs of the tests that is difficult. Testing costs depend heavily on when in the project
life cycle testing occurs. As noted in Chapter 2, the later in the life cycle testing occurs,
the higher the cost. The cost of a defect is twofold: You pay to identify a defect and to
correct it.

Guideline #4: Testing Should Be Performed
Using Business Logic

The cost of identifying and correcting defects increases exponentially as the project pro-
gresses. Figure 3-1 illustrates the accepted industry standard for estimating costs and
shows how costs dramatically increase the later you find a defect. A defect encountered
during the execution of a SDLC phase is the cheapest to fix if corrected in the same
SDLC phase where the defect occurred. Let’s assume a defect found and corrected dur-
ing the SDLC design phase costs x to fix. If that same defect is corrected during the sys-
tem test phase, it will cost 10x to fix. The same defect corrected after the system goes into
production will cost 100x. Clearly, identifying and correcting defects early is the most
cost-effective way to develop an error-free system.

RELATIVE COST VS. THE PROJECT PHASE

3

>
N
o
o

(15.0)
$15,000

OR MISUNDERSTANDING

RELATIVE COST TO FIX ERROR

|

“—NDwhrbhoNmoo

]

Analysis Design Code System Operation
Test

\4

PHASE IN WHICH ERROR IS DETECTED

Figure 3-1 Relative cost versus the project phase.

68

Chapter 3

Testing should begin during the first phase of the life cycle and continue through-
out the life cycle. Although this book is centered on V-concept testing (detailed in
Chapter 6), it’s important to recognize that life-cycle testing is essential to reducing the
cost of testing.

Guideline #5: Testing Should Occur Throughout
the Development Life Cycle

Life-cycle testing involves continuous testing of the solution even after software plans
are complete and the tested system is implemented. At several points during the devel-
opment process, the test team should test the system to identify defects at the earliest
possible point.

Life-cycle testing cannot occur until you formally develop your test process. IT must
provide and agree to a strict schedule for completing various phases of the test process for
proper life-cycle testing to occur. If IT does not determine the order in which they deliver
completed pieces of software, appropriate tests are impossible to schedule and conduct.

Testing is best accomplished by forming a test team. The test team must use struc-
tured methodologies; they should not use the same methodology for testing that they
used to develop the system. The effectiveness of the test team depends on developing
the system under one methodology and testing it under another. As illustrated in Fig-
ure 3-2, when the project starts, both the development process and system test process
also begin. Thus, the testing and implementation teams begin their work at the same
time and with the same information. The development team defines and documents
the requirements for implementation purposes, and the test team uses those require-
ments for the purpose of testing the system. At appropriate points during the develop-
ment process, the test team runs the compliance process to uncover defects. The test
team should use the structured testing techniques outlined in this book as a basis of
evaluating the corrections.

As you're testing the implementation, prepare a series of tests that your IT depart-
ment can run periodically after your revised system goes live. Testing does not stop
once you've completely implemented your system; it must continue until you replace
or update it again.

DEVELOPMENT
hd T
. :
TEST

REQUIREMENTS ~ DESIGN PROGRAM TEST =~ OPERATION MAINTENANCE

SDLC PHASE
Figure 3-2 Life-cycle testing concepts.

Building the Software Testing Process

69

Guideline #6: Testing Should Test Both
Function and Structure
When testers test your project team’s solution, they’ll perform functional or structural
tests. Functional testing is sometimes called black box testing because no knowledge of
the system’s internal logic is used to develop test cases. For example, if a certain func-
tion key should produce a specific result when pressed, a functional test would be to
validate this expectation by pressing the function key and observing the result. When
conducting functional tests, you'll be using validation techniques almost exclusively.
Conversely, structural testing is sometimes called white box testing because knowl-
edge of the system’s internal logic is used to develop hypothetical test cases. Structural
tests predominantly use verification techniques. If a software development team cre-
ates a block of code that will allow a system to process information in a certain way, a
test team would verify this structurally by reading the code, and given the system’s
structure, see if the code could work reasonably. If they felt it could, they would plug
the code into the system and run an application to structurally validate the code. Each
method has its pros and cons, as follows:
m Functional testing advantages:
m Simulates actual system usage
m Makes no system structure assumptions
m Functional testing disadvantages:
m Includes the potential to miss logical errors in software
m Offers the possibility of redundant testing
m Structural testing advantages:
m Enables you to test the software’s logic
m Enables you to test structural attributes, such as efficiency of code
m Structural testing disadvantages:
m Does not ensure that you've met user requirements

m May not mimic real-world situations

Why Use Both Testing Methods?

Both methods together validate the entire system. For example, a functional test case
might be taken from the documentation description of how to perform a certain func-
tion, such as accepting bar code input. A structural test case might be taken from a tech-
nical documentation manual. To effectively test systems, you need to use both methods.

Structural and Functional Tests Using
Verification and Validation Techniques

Testers use verification techniques to confirm the reasonableness of a system by review-
ing its structure and logic. Validation techniques, on the other hand, strictly apply to

70

Chapter 3

physical testing, to determine whether expected results occur. You'll conduct structural
tests primarily using verification techniques, and functional tests using validation tech-
niques. Using verification to conduct structural tests would include

m Feasibility reviews. Tests for this structural element would verify the logic
flow of a unit of software.

m Requirements reviews. These reviews verify software attributes; for example,
in any particular system, the structural limits of how much load (transactions
or number of concurrent users) a system can handle.

Functional tests are virtually all validation tests, and inspect how the system per-
forms. Examples of this include

m Unit testing. These tests verify that the system functions properly—for exam-
ple, pressing a function key to complete an action.

m Integrated testing. The system runs tasks that involve more than one applica-
tion or database to verify that it performed the tasks accurately.

m System testing. These tests simulate operation of the entire system, and verify
that it ran correctly.

m User acceptance. This real-world test means the most to your business. Unfor-
tunately, there’s no way to conduct it in isolation. Once your organization staff,
customers, or vendors begin to interact with your system, they’ll verify that it
functions properly for you.

Verification and validation are not mutually exclusive, so you will conduct func-
tional tests with verification and structural tests with validation during your project.
Table 3-3 shows the relationships just explained, listing each of the six test activities,
who performs them, and whether the activity is an example of verification or valida-
tion. For example, when conducting a feasibility review, developers and users verify
that the software could conceivably perform after the solution is implemented the way
the developers expect.

.m You can learn more about verification and validation techniques in
Chapters 9 and 10, respectively.

Table 3-3 Functional Testing

TEST PHASE PERFORMED BY VERIFICATION VALIDATION
Feasibility Review Developers, users X

Requirements Review Developers, users X

Unit Testing Developers X
Integration Testing Developers X
System Testing Developers with X

user assistance

User Acceptance Users X

Building the Software Testing Process

71

Now that you've seen how you must verify and validate your system structurally
and functionally, the last tool to introduce is a process template for employing these
tactics, called the tester’s workbench.

Workbench Concept

To understand testing methodology, you must understand the workbench concept. In
IT organizations, workbenches are more frequently referred to as phases, steps, or
tasks. The workbench is a way of illustrating and documenting how a specific activity
is to be performed. Defining workbenches is normally the responsibility of a process
management committee, which in the past has been more frequently referred to as a
standards committee. There are four components to each workbench:

1. Input. The entrance criteria or deliverables needed to complete a task.

2. Procedures to do. The work tasks or processes that will transform the input
into the output.

3. Procedures to check. The processes that determine that the output meet the
standards.

4. Output. The exit criteria or deliverables produced from the workbench.

.m Testing tools are not considered part of the workbench because they
are incorporated into either the procedures to do or procedures to check. The
workbench is illustrated in Figure 3-3, and the software development life cycle,
which is comprised of many workbenches, is illustrated in Figure 3-4.

WORKBENCH

REWORK

PROCEDURE
PRODUCT(S) TO PRODUCT(S)
ESEE—
IN DO ouT
WORK

A

TOOLS

Figure 3-3 The workbench for testing software.

72

Chapter 3

REWORK REWORK REWORK REWORK rel

PROCEDURE PROCEDURE PROCEDURE
|l T0 T0 1 T0 |
DO DO DO
WORK WORK WORK

—{ Toos - To0LS - —{ TooLs To0LS J —

Figure 3-4 The test process contains multiple workbenches.

The workbench concept can be used to illustrate one of the steps involved in build-
ing systems. The programmer’s workbench consists of the following steps:
1. Input products (program specs) are given to the producer (programmer).

2. Work is performed (e.g., coding/debugging); a procedure is followed; a prod-
uct or interim deliverable (e.g., a program/module/unit) is produced.

3. Work is checked to ensure product meets specs and standards, and that the do
procedure was performed correctly.

4. If the check process finds problems, the product is sent back for rework.

5. If the check process finds no problems, the product is released to the next
workbench

Chapters 6 through 13, which walk you through testing your software development
project, describe each step in workbench format. Each chapter begins with a work-
bench description for that step.

Testing That Parallels the Software Development Process

When the processes for developing software and testing software are shown in a single
diagram, they are frequently presented as what is known as a “V diagram.” On one
side of the V are the steps for developing software, and on the other side are the steps
for testing software. Figure 3-5 illustrates the V diagram for the seven-step software-
testing process presented in this book.

The process for developing software contains the following generic steps:
Define the requirements for the software system.
Design the software system based on the requirements.
Build the software based on the design.
Test the software (which involves unit testing and frequently integration testing).

Install the software in an operational environment.

S

Maintain the software as changes are needed (Note: unless changes are signifi-
cant, the developers will test the changes and then install the new version.)

Building the Software Testing Process 73

Development Independent
of Software Test of Software
. Step 1
Reqlai?'z;eents Organizing for Testing

Chapter 7
\ Step 2
Design Test Plan
Software Ci}terB
\ Step 3
Verification Testing
Build Chapter 9

Software /
Step 4
Validation Testing
Chapter 10

Install /

Software Step 5

Analyzing and Reporting
\ Chapter 11

Step 6
Acceptance and Operational Testing

\ Chapter 12

Step 7
Post-Implementation Analysis
Chapter 13

Operate and
Maintain Software

Figure 3-5 The V diagram for the seven-step software-testing process.

The process for testing software involves the following steps:

1. Prepare for testing a software system.

2. Plan the tests that will be conducted on the software system.
3. Execute the steps as defined in the test plan.
4

. Conduct acceptance testing by the software system users. (Note: This testing
may be assisted by the IT independent test group.)

5. Analyze test results and report them to the appropriate software system
stakeholders.

6. Test the installation of the software into the operational environment, and test
changes made to the software after it is placed into the operational environment.

7. Conduct a post-implementation analysis to evaluate the effectiveness and effi-
ciency of the test process.

74

Chapter 3

Each of the seven steps in the software-testing process can be represented by the soft-
ware testing workbench. In the seven-step process, these testing workbenches comprise
multiple steps. Therefore, there would be multiple workbenches within the overall
workbench for each step.

An IT organization should customize the seven-step testing process for its particu-
lar situation. The seven-step process presented in this book is one that testers might use
for a large, complex software system. The following sections discuss eight considera-
tions that your organization should use when customizing the seven-step software-
testing process.

Customizing the Software-Testing Process

The following are eight considerations you need to address when customizing the
seven-step software-testing process:

1. Determine the test strategy objectives.
Determine the type of development project.
Determine the type of software system.
Determine the project scope.

Identify the software risks.

Determine when testing should occur.

Define the system test plan standard.

® N 9k LN

Define the unit test plan standard.

.m You can use the CD included with this book to customize the templates
in the seven-step software-testing process for your organization.

Determining the Test Strategy Objectives

Test strategy is normally developed by a team very familiar with the business risks
associated with the software; tactics are developed by the test team. Thus, the test team
needs to acquire and study the test strategy. In this study, the test team should ask the
following questions:

m What is the ranking of the test factors?
m Which of the high-level risks are the most significant?

m What damage can be done to the business if the software fails to perform
correctly?

Building the Software Testing Process

75

m What damage can be done to the business if the software is not completed

on time?

m Which individuals are most capable of understanding the impact of the identi-

fied business risks?

Determining the Type of Development Project

The type of development project refers to the environment/methodology in which the soft-
ware will be developed. As the environment changes, so does the testing risk. For exam-
ple, the risks associated with the traditional development effort differ from the risks
associated with off-the-shelf purchased software. Different testing approaches must be
used for different types of projects, just as different development approaches are used

(see Figure 3-6).

TYPE

Traditional system
development (and most
perfective maintenance)

CHARACTERISTICS

Uses a system devel-
opment methodology

User knows
requirements

Development
determines structure

TEST TACTICS

Test at end of each
task/step/phase

Verify that specs
match need

Test function and
structure

Iterative development/
prototyping

Requirements
unknown

Structure predefined

Verify that tools
are used properly

Test functionality

System maintenance

Modify structure

Test structure

Works best with
release methods

Requires regression
testing

Purchased/contracted
software

Structure unknown
May contain defects

Functionality defined
in user
documentation

Documentation may
vary from software

Verify that
functionality matches
need

Test functionality

Test fit into
environment

Figure 3-6 Test tactics for different project types.

Chapter 3

Determining the Type of Software System

The type of software system refers to the processing that will be performed by that sys-
tem. This step contains 16 different software system types. However, a single software
system may incorporate more than one of these types. Identifying the specific software
type will help build an effective test plan.

m Batch (general). Can be run as a normal batch job and makes no unusual hard-
ware or input-output actions (for example, a payroll program or a wind tunnel
data analysis program).

m Event control. Performs real-time data processing as a result of external events
(for example, a program that processes telemetry data).

m Process control. Receives data from an external source and issues commands to
that source to control its actions based on the received data.

m Procedure control. Controls other software (for example, an operating system
that controls the execution of time-shared and batch computer programs).

m Advanced mathematical models. Resembles simulation and business strategy
software, but has the additional complexity of heavy use of mathematics.

m Message processing. Handles input and output messages, processing the text
or information contained therein.

m Diagnostic software. Detects and isolates hardware errors in the computer
where it resides or in other hardware that can communicate with that computer.

m Sensor and signal processing. Similar to that of message processing, but
requires greater processing to analyze and transform the input into a usable
data processing format.

m Simulation. Simulates an environment, mission situation, other hardware;
inputs from these to enable a more realistic evaluation of a computer program
or hardware component.

m Database management. Manages the storage and access of (typically large)
groups of data. Such software can also prepare reports in user-defined formats
based on the contents of the database.

m Data acquisition. Receives information in real time and stores it in some form
suitable for later processing (for example, software that receives data from a
space probe and files it for later analysis).

m Data presentation. Formats and transforms data, as necessary, for convenient
and understandable displays for humans. Typically, such displays would be for
some screen presentation.

m Decision and planning aids. Uses artificial intelligence techniques to provide
an expert system to evaluate data and provide additional information and con-
sideration for decision and policy makers.

m Pattern and image processing. Generates and processes computer images. Such
software may analyze terrain data and generate images based on stored data.

Building the Software Testing Process

77

m Computer system software. Provides services to operational computer
programs.

m Software development tools. Provides services to aid in the development of soft-
ware (for example, compilers, assemblers, and static and dynamic analyzers).

Determining the Project Scope

The project scope refers to the totality of activities to be incorporated into the software
system being tested—the range of system requirements/specifications to be under-
stood. The scope of new system development is different from the scope of changes to
an existing system. This step describes some of the necessary characteristics, but this
list must be expanded to encompass the requirements of the specific software system
being tested. The scope of the project usually delimits the scope of the testing effort.
Consider the following issues:
m New systems development:
m What business processes are included in the software?
m Which business processes will be affected?
m Which business areas will be affected?
m What existing systems will interface with this system?
m Which existing systems will be affected?
m Changes to existing systems:
m Are the changes corrective or is new functionality being added?
m s the change caused by new standards?

m What other systems are affected?

m s regression testing needed?

Identifying the Software Risks

Strategic risks are the high-level business risks faced by the software system; software
system risks are subsets. The purpose of decomposing the strategic risks into tactical
risks is to assist in creating the test scenarios that will address those risks. It is difficult
to create test scenarios for high-level risks.

Tactical risks can be categorized as follows:

Structural risks

Technical risks

Size risks

Work Papers 3-1, 3-2, and 3-3 provide the method for assessing the structural, tech-

nical, and size risks, respectively. These Work Papers are to be completed by the test
team interacting with the development team and selected end users/customers. Each

78

Chapter 3

of the three Work Papers identifies a risk, a rating for the risk, and a weight associated
with the risk. The identification of the risk and its associated weight are supplied as
part of the tactical risk assessment process. Weight is an indication of the relative
importance of each risk in relationship to the other risks.

To complete Work Papers 3-1, 3-2, and 3-3, perform the following steps:

1. Understand the risk and the ratings provided for that risk. The higher the
predefined rating, the greater the risk. In most instances, ratings will be
between 1 and 4.

2. Determine the applicable rating for the software system being tested. Select
one of the listed ratings for each risk and place it in the Ratings column. For
example, on the Structural Risk Assessment Work Paper (3-1), if you deter-
mined that the amount of time since the last major change to the existing area
of business was more than two years, you would note that a low rating was
indicated, and put a 1 in the Ratings column.

3. Calculate and accumulate the risk score. The ratings you provided in the
Ratings column should be multiplied by the weight to get a score. The score
for each work paper should then be accumulated and the total score posted to
Work Paper 3-4. When the three work papers have been completed, you will
have posted three scores to the Risk Score Analysis Work Paper.

To complete Work Paper 3-4, perform the following steps:

1. Calculate average risk score by risk area. To do this, total the number of risks
on Work Papers 3-1, 3-2, and 3-3 and divide that into the total score on Work
Paper 3-4 to obtain an average score for the three risk areas. Do the same for the
total risk score for the software.

2. Post comparative ratings. After you have used these Work Papers a number of
times, you will develop average scores for your application systems. Take the
score totals for your application systems and rank them from high to low for
each of the three risk areas. Then determine an average for the high third of the
scores, the middle third of the scores, and the low third of the scores. This aver-
age is the cumulative rating for your company’s applications and can be perma-
nently recorded on Work Paper 3-4. This will enable you to compare the score of
the system you are testing against comparative ratings so you can determine
whether the system you are working on is high, medium, or low risk in each of
the three risk areas and overall.

3. List at the bottom of Work Paper 3-4 all the risk attributes from the three
worksheets that received a high-risk rating. Identify the area (for example,
structure) and list the specific risk that was given a high rating. Then, for each
of those risks, determine the specific test concern and list it on Work Paper 3-4.

When you have completed this assessment process, the tactical risks will be well
defined, enabling the insight gained from this step to be embedded into the test plan.
Obviously, areas of high risk may need special attention; for example, if size puts the
project in a high-risk rating, extra test effort may be needed, focused on ensuring that

Building the Software Testing Process 79

the system can handle the volume or size of transactions specified for the software. Test
concerns can be addressed by specific tests designed to evaluate the magnitude of the
risk and the adequacy of controls in the system to address that risk.

Determining When Testing Should Occur

The previous steps have identified the type of development project, the type of soft-
ware system, the project scope, and the technical risks. Using that information, the
point in the development process when testing should occur must be determined. The
previous steps have identified what type of testing needs to occur, and this step will
tell when it should occur.

Testing can and should occur throughout the phases of a project (refer to Figure 3-2).
Examples of test activities to be performed during these phases are:

A.

Requirements phase activities

m Determine test strategy

m Determine adequacy of requirements

m Generate functional test conditions

Design phase activities

m Determine consistency of design with requirements
m Determine adequacy of design

m Generate structural and functional test conditions
Program phase activities

m Determine consistency with design

m Determine adequacy of implementation

m Generate structural and functional test conditions for programs/units
Test phase activities

m Determine adequacy of the test plan

m Test application system

Operations phase activities

m Place tested system into production

Maintenance phase activities

m Modify and retest

Defining the System Test Plan Standard

A tactical test plan must be developed to describe when and how testing will occur.
This test plan will provide background information on the software being tested, on
the test objectives and risks, as well as on the business functions to be tested and the
specific tests to be performed.

Chapter 3

Information on the test environment part of the test plan is described in Part Two of
this book. Reference other parts of the book for development methodologies other than
the SDLC methodology; for example, Chapter 15 addresses client/server systems.

The test plan is the road map you should follow when conducting testing. The plan
is then decomposed into specific tests and lower-level plans. After execution, the
results are rolled up to produce a test report. The test reports included in Chapter 11 are
designed around standardized test plans. A recommended test plan standard is illus-
trated in Figure 3-7; it is consistent with most of the widely accepted published test
plan standards.

1. GENERAL INFORMATION

1.1 Summary. Summarize the functions of the software and the tests to be
performed.

1.2 Environment and Pretest Background. Summarize the history of the
project. Identify the user organization and computer center where the
testing will be performed. Describe any prior testing and note results that
may affect this testing.

1.3 Test Objectives. State the objectives to be accomplished by testing.

1.4 Expected Defect Rates. State the estimated number of defects for
software of this type.

1.5 References. List applicable references, such as:

a) Project request authorization.
b) Previously published documents on the project.
c¢) Documentation concerning related projects.

2. PLAN

2.1 Software Description. Provide a chart and briefly describe the inputs,
outputs, and functions of the software being tested as a frame of
reference for the test descriptions.

2.2 Test Team. State who is on the test team and their test assignment(s).
2.3 Milestones. List the locations, milestone events, and dates for the testing.
2.4 Budagets. List the funds allocated to test by task and checkpoint.

2.5 Testing (systems checkpoint). Identify the participating organizations and
the system checkpoint where the software will be tested.

2.5.1 Schedule (and budget). Show the detailed schedule of dates and
events for the testing at this location. Such events may include
familiarization, training, data, as well as the volume and frequency
of the input. Resources allocated for test should be shown.

Figure 3-7 System test plan standard.

Building the Software Testing Process 81

2.5.2 Requirements. State the resource requirement, including:

a) Equipment. Show the expected period of use, types, and
quantities of the equipment needed.

b) Software. List other software that will be needed to support
the testing that is not part of the software to be tested.

c) Personnel. List the numbers and skill types of personnel
that are expected to be available during the test from both
the user and development groups. Include any special
requirements such as multishift operation or key personnel.

2. PLAN
2.5.3 Testing Materials. List the materials needed for the test, such as:

a) System documentation

b) Software to be tested and its medium
¢) Testinputs

d) Test documentation

e) Test tools

2.5.4 Test Training. Describe or reference the plan for providing training
in the use of the software being tested. Specify the types of
training, personnel to be trained, and the training staff.

2.5.5 Test to be Conducted. Reference specific tests to be conducted at
this checkpoint.

2.6 Testing (system checkpoint). Describe the plan for the second and
subsequent system checkpoint where the software will be tested in a
manner similar to paragraph 2.5.

3. SPECIFICATIONS AND EVALUATION
3.1 Specifications

3.1.1 Business Functions. List the business functional requirement
established by earlier documentation, or Task 1 of Step 2.

3.1.2 Structural Functions. List the detailed structural functions to be
exercised during the overall test.

3.1.3 Test/Function Relationships. List the tests to be performed on the
software and relate them to the functions in paragraph 3.1.2.

3.1.4 Test Progression. Describe the manner in which progression is
made from one test to another so that the entire test cycle is
completed.

Figure 3.7 (continued)

82

Chapter 3

3.2.1

3.2.2
3.23

3.24

3.25

3.3.1

3.3.2

4.1.1

4.1.4

3.2 Methods and Constraints.

Methodology. Describe the general method or strategy of the
testing.

Test Tools. Specify the type of test tools to be used.

Extent. Indicate the extent of the testing, such as total or partial.
Include any rationale for partial testing.

Data Recording. Discuss the method to be used for recording the
test results and other information about the testing.

Constraints. Indicate anticipated limitations on the test due to test
conditions, such as interfaces, equipment, personnel, data- bases.

3. SPECIFICATIONS AND EVALUATION

3.3 Evaluation.

Criteria. Describe the rules to be used to evaluate test results,
such as range of data values used, combinations of input types
used, maximum number of allowable interrupts or halts.

Data Reduction. Describe the techniques to be used for
manipulating the test data into a form suitable for evaluation,
such as manual or automated methods, to allow comparison of
the results that should be produced to those that are produced.

4. TEST DESCRIPTIONS

4.1 Test (Identify). Describe the test to be performed (format will vary for on-
line test script).

Control. Describe the test control, such as manual, semiautomatic
or automatic insertion of inputs, sequencing of operations, and
recording of results.

Inputs. Describe the input data and input commands used during
the test.

Outputs. Describe the output data expected as a result of the test
and any intermediate messages that may be produced.

Procedures. Specify the step-by-step procedures to accomplish
the test. Include test setup, initialization, steps and termination.

4.2 Test (Identify). Describe the second and subsequent tests in a manner
similar to that used in paragraph 4.1.

Figure 3.7 (continued)

Building the Software Testing Process

83

Defining the Unit Test Plan Standard

During internal design, the system is divided into the components or units that per-
form the detailed processing. Each of these units should have its own test plan. The
plans can be as simple or as complex as the organization requires based on its quality
expectations.

The importance of a unit test plan is to determine when unit testing is complete. It is
a bad idea economically to submit units that contain defects to higher levels of testing.
Thus, extra effort spent in developing unit test plans, testing units, and ensuring that
units are defect free prior to integration testing can have a significant payback in reduc-
ing overall test costs.

Figure 3-8 presents a suggested unit test plan. This unit test plan is consistent with
the most widely accepted unit test plan standards. Note that the test reporting in Chap-
ter 11 for units assumes that a standardized unit test plan is utilized.

Converting Testing Strategy to Testing Tactics

Developing tactics is not a component of establishing a testing environment. However,
understanding the tactics that will be used to implement the strategy is important in cre-
ating work processes, selecting tools, and ensuring that the appropriate staff is acquired
and trained. The objective of this section is to introduce you to the testing tactics that will
be incorporated into the approach to software testing presented in this book.

The testing methodology proposed in this book incorporates both testing strategy
and testing tactics. The tactics address the test plans, test criteria, testing techniques, and
testing tools used in validating and verifying the software system under development.

The testing methodology cube represents a detailed work program for testing soft-
ware systems (see Figure 3-9). A detailed testing work program is important to ensure
that the test factors have been adequately addressed at each phase of the systems
development life cycle. This book provides a detailed description of the work program
represented by the testing methodology cube.

The cube is a three-dimensional work program. The first and most important dimen-
sions are the test factors that are selected for a specific application system test strategy.
If the testing process can show that the selected test factors have been adequately han-
dled by the application system, the test process can be considered satisfactorily com-
pleted. In designing the test work program, there are concerns in each phase of the life
cycle that the test factors will not be achieved. While the factors are common to the
entire life cycle, the concerns vary according to the phase of the life cycle. These con-
cerns represent the second dimension of the cube. The third dimension of the cube is
the test tactics. There are criteria that, if satisfied, would assure the tester that the appli-
cation system has adequately addressed the risks. Once the test tactics have ensured
that the risks are addressed, the factors can also be considered satisfied and the test tac-
tics are complete.

84

Chapter 3

1.

PLAN

1.1

1.2
1.3
1.4
1.5

1.6

Unit Description. Provide a brief description and flowchart of the unit
which describes the input, outputs, and functions of the unit being tested
as a frame of reference for the specific tests.

Milestones. List the milestone events and dates for testing.
Budget. List the funds allocated to test this unit.
Test Approach. The general method or strategy used to test this unit.

Functions not Tested. List those functions which will not be validated as a
result of this test.

Test Constraints. Indicate anticipated limitations on the test due to test
conditions, such as interfaces, equipment, personnel, and data bases.

BUSINESS AND STRUCTURAL FUNCTION TESTING

2.1

2.2
2.3

24

2.5

2.6

Business Functions. List the business functional requirements included in
this unit.

Structural Functions. List the structural functions included in the unit.

Test Descriptions. Describe the tests to be performed in evaluating
business and structural functions.

Expected Test Results. List the desired result from each test. That which
will validate the correctness of the unit functions.

Conditions to Stop Test. The criteria which if occurs will result in the tests
being stopped.

Test Number Cross-Reference. A cross-reference between the system test
identifiers and the unit test identifiers.

INTERFACE TEST DESCRIPTIONS

3.1 Interface. List the interfaces that are included in this unit.

3.2 Test Description. Describe the tests to be performed to evaluate the
interfaces.

3.3 Expected Test Results. List the desired result from each test. That which
will validate the correctness of the unit functions.

3.4 Test Number Cross-Reference. A cross-reference between the system test
identifiers and the unit test identifiers.

TEST PROGRESSION

List the progression in which the tests must be performed. Note that this is
obtained from the system test plan. This section may be unnecessary if the
system test plan progression worksheet can be carried forward.

Figure 3-8 Unit test plan standard.

Building the Software Testing Process 85

VT o

]
/ / / / / / / / / OPERATION
/ / / / / / / / / MAINTENANCE /

~

[)]]] [seaumaens

[[]]]] e

[]] [\g

I

Figure 3-9 Example of a test-tactics matrix.

The three dimensions of the cube will be explained in detail in later chapters,
together with the tools and techniques needed for the testing of the application system.
The test factors have been previously explained. The test tactics outline the steps to be
followed in conducting the tests, together with the tools and techniques needed for each
aspect of testing. The test phases are representative of the more commonly accepted
system development life cycles. Later chapters are devoted to testing in each phase of
the life cycle, and in those chapters, the phase and test tactics for that phase are
explained in detail.

86

Chapter 3

Process Preparation Checklist

Work Paper 3-5 is a checklist that you can use to assess the items to be addressed by the
test planning process. Use this checklist as you build your test process; it will help
ensure that the test process will address the components of effective testing.

A Yes response to any checklist items means that you’ve chosen an effective process
component for your test process. If you don’t want to include a particular item in your
test process, insert No for that item. Use the Comments column to clarify your
response and to provide guidance for building the test process. A blank worksheet has
been provided for your use at the end of this chapter.

Summary

Effective and efficient testing will occur only when a well-defined process exists. This
chapter presented six guidelines to improve the effectiveness and efficiency of soft-
ware-testing process. The chapter explained the workbench concept to be used in
building your software-testing process. A seven-step software-testing process was pre-
sented that can be viewed as seven major testing workbenches; each of these steps
incorporate several minor or sub-workbenches within the step workbench. Normally,
that generic seven-step process requires customization to fit into your culture and IT
mission. Customization considerations were provided to help you with the customiza-
tion process.

The seven-step process designed in this book is recommended as a generic software-
testing process you should use in your organization. The next chapter will provide
guidance on selecting and incorporating tools into the software testing process.

Building the Software Testing Process 87

WORK PAPER 3-1 Structural Risk Assessment

TEST DOCUMENT

Structural Risk Assessment

Ratings: L-Low M -Medium H-High NA - Not Applicable RATING x WEIGHT=

RISK RATINGS SCORE
1. Amount of time since last major change to existing area of 3

business

* More than 2 years L=1

* 1 to 2 years; unknown M=2

e Less than 1 year H=3

e No automated system H=3
2. Estimated frequency of change to proposed/existing systems 3

¢ No existing automated system; or development effort
insufficient for estimate NA=0

* Fewer than 2 per year L=1
e 2 to 10 per year M=2
* More than 20 per year H=3
3. Estimated extent of total changes in business area methods 3
in last year in percentage of methods affected
¢ No changes NA=0
* Less than 10% L=1
* 10to 25% M=2
* More than 25% H=3
4. Magnitude of changes in business area associated with this 3
project
e Minor change(s) L=1
e Significant but manageable change M=2
* Major changes to system functionality and/or resource H=4
needs
5. Project performance site 2
e Company facility L=1
¢ Local noncompany facility M=2
* Not in local area H=5
6. Critical staffing of project 2
¢ In-house L=1
e Contractor, sole-source M=2
¢ Contractor, competitive-bid H=6
7. Type of project organization 2
e Line and staff: project has total management control of L=1
personnel
e Mixture of line and staff with matrix-managed elements M=2
e Matrix: no management control transferred to project H=3

(continues)

Chapter 3

WORK PAPER 3-1 (continued)

TEST DOCUMENT

Structural Risk Assessment

Ratings: L - Low M -Medium H-High NA - Not Applicable

RATING x WEIGHT=

RISK RATINGS SCORE
8. Potential problems with subcontractor relationship 5
¢ Not applicable to this project NA=0
e Subcontractor not assigned to isolated or critical task: prime =1
contractor has previously managed subcontractor successfully
e Subcontractor assigned to all development tasks in M=2
subordinate role to prime contractor: company has
favorable experience with subcontractor on other effort(s)
e Subcontractor has sole responsibility for critical task; H=3
subcontractor new to company
9. Status of the ongoing project training 2
¢ No training plan required NA=0
e Complete training plan in place L=
e Some training in place M=2
¢ No training available H=3
10. Level of skilled personnel available to train project team 3
¢ No training required NA=0
¢ Knowledgeable on all systems L=
¢ Knowledgeable on major components M=2
* Few components understood H=3
11. Accessibility of supporting reference and or compliance documents 3
and other information on proposed/existing system
* Readily available L=1
¢ Details available with some difficulty and delay M=2
e Great difficulty in obtaining details, much delay H=3
12. Status of documentation in the user areas 3
e Complete and current L=1
* More than 75% complete and current M=2
* Nonexistent or outdated H=6
13. Nature of relationship with users in respect to updating project 3
documentation to reflect changes that may occur during project
development
¢ Close coordination L=1
¢ Manageable coordination M=2
® Poor coordination H=5
14. Estimated degree to which project documentation reflects actual 3
business need
* Excellent documentation L=1
¢ Good documentation but some problems with reliability M=2
e Poor or inadequate documentation H=3

Building the Software Testing Process 89

WORK PAPER 3-1 (continued)

TEST DOCUMENT

Structural Risk Assessment

Ratings: L - Low M -Medium H-High NA - Not Applicable RATING x WEIGHT=
RISK RATINGS SCORE
15. Quality of documentation for the proposed system 3

¢ Excellent standards: adherence and execution are integral L=1
part of system and program development
¢ Adequate standards: adherence is not consistent M=2
® Poor or no standards: adherence is minimal H=3
16. Quality of development and production library control 3
* Excellent standards: superior adherence and execution L=1
e Adequate standards: adherence is not consistent M=2
e Poor or no standards: adherence is minimal H=3
17. Availability of special test facilities for subsystem testing 2
e Complete or not required L=1
e Limited M=2
* None available H=3
18. Status of project maintenance planning 2
e Current and complete L=1
¢ Under development M=2
* Nonexistent H=3
19. Contingency plans in place to support operational mission 2
should application fail
* None required NA=0
e Complete plan L=1
* Major subsystems addressed M=2
* Nonexistent H=3
20. User approval of project specifications 4
* Formal, written approval based on structured, detailed review L=1
processes
e Formal, written approval based on informal unstructured, M=2
detailed review processes
¢ No formal approval; cursory review H=3
21. Effect of external systems on the system 5
¢ No external systems involved NA=0
e Critical intersystem communications controlled through L=1
interface control documents; standard protocols utilized:
stable interfaces
e Critical intersystem communications controlled through M=2
interface control documents: some nonstandard protocols:
interfaces change infrequently
e Not all critical intersystem communications controlled H=3

through interface control documents: some nonstandard
protocols: some interfaces change frequently

(continues)

90

Chapter 3

WORK PAPER 3-1 (continued)

TEST DOCUMENT

Structural Risk Assessment

Ratings: L-Low M -Medium H-High NA - Not Applicable

RATING x WEIGHT=

RISK RATINGS SCORE
22. Type and adequacy of configuration management planning 2
e Complete and functioning L=1
e Undergoing revisions for inadequacies M=2
* None available H=3
23. Type of standards and guidelines to be followed by project 4
e Standards use structured programming concepts, reflect L=1
current methodology, and permit tailoring to nature and
scope of development project
e Standards require a top-down approach and offer some M=2
flexibility in application
e Standards are out of date and inflexible H=3
24. Degree to which system is based on well-specified requirements 5
¢ Detailed transaction and parametric data in requirements L=1
documentation
e Detailed transaction data in requirements documentation M=2
¢ Vague requirements documentation H=5
25. Relationships with those who are involved with system 3
(e.g., users, customers, sponsors, interfaces) or who must be
dealt with during project effort
¢ No significant conflicting needs: system primarily serves one L=1
organizational unit
e System meets limited conflicting needs of cooperative
organization units M=2
e System must meet important conflicting needs of several
cooperative organization units H=3
e System must meet important conflicting needs of several
uncooperative organizational units H=4
26. Changes in user area necessary to meet system operating 3
requirements
¢ Not applicable NA=0
* Minimal L=1
e Somewhat M=2
* Major H=3
27. General user attitude 5
e Good: values data processing solution L=1
e Fair: some reluctance M=2
* Poor: does not appreciate data processing solution H=3

Building the Software Testing Process 91

WORK PAPER 3-1 (continued)

TEST DOCUMENT

Structural Risk Assessment

Ratings: L-Low M -Medium H-High NA - Not Applicable RATING x WEIGHT=
RISK RATINGS SCORE
28. Status of people, procedures, knowledge, discipline, and 4

division of details of offices that will be using system
e Situation good to excellent L=1
e Situation satisfactory but could be improved M=2
e Situation less than satisfactory H=3
29. Commitment of senior user management to system 3
¢ Extremely enthusiastic L=1
e Adequate M=3
* Some reluctance or level of commitment unknown H=3
30. Dependence of project on contributions of technical effort from 2
other areas (e.g., database administration)
* None L=1
® From within IT M=2
e From outside IT H=3
31. User's IT knowledge and experience 2
¢ Highly capable L=1
® Previous exposure but limited knowledge M=2
¢ First exposure H=3
32. Knowledge and experience of user in application area 2
® Previous experience L=1
e Conceptual understanding M=2
¢ Limited knowledge H=4
33. Knowledge and experience of project team in 3
application area
* Previous experience L=1
e Conceptual understanding M=2
e Limited knowledge H=4
34. Degree of control by project management 2
¢ Formal authority commensurate with assigned responsibility L=1
e Informal authority commensurate with assigned responsibility M=2
* Responsibility but no authority H=3
35. Effectiveness of project communications 2
e Easy access to project manager(s); change information L=1
promptly transmitted upward and downward
e Limited access to project manager(s); downward M=2
communication limited
* Aloof project management; planning information closely held H=3

(continues)

92 Chapter 3

WORK PAPER 3-1 (continued)

TEST DOCUMENT

Structural Risk Assessment

Ratings: L - Low M -Medium H-High NA - Not Applicable RATING x WEIGHT=
RISK RATINGS SCORE

36. Test team’s opinion about conformance of system specifications 3
to business needs based on early tests and/or reviews

e Operational tests indicate that procedures and operations =1
produce desired results
Limited tests indicate that procedures and operations differ M=2
from specifications in minor aspects only
® Procedures and operations differ from specifications in H=3
important aspects: specifications insufficient to use for
testing

37. Sensitivity of information 1

¢ None L=0
¢ High H=3

Total | 107.00
PREPARED BY: DATE: Total Score / Total Weight = Risk Average

Building the Software Testing Process 93

WORK PAPER 3-2 Technical Risk Assessment

TEST DOCUMENT

Technical Risk Assessment

Ratings: L-Low M -Medium H-High NA - Not Applicable RATING x WEIGHT=
RISK RATINGS SCORE
1. Ability to fulfill mission during hardware or software failure 2

e Can be accomplished without system L=1
e Can be accomplished without fully operational system, but M=2
some minimum capability required
e Cannot be accomplished without fully automated system H=6
2. Required system availability 2
e Periodic use (weekly or less frequently) L=1
e Daily use (but not 24 hours per day) M=2
e Constant use (24 hours per day) H=5
3. Degree to which system’s ability to function relies on 2
exchange of data with external systems
¢ Functions independently: sends no data required for the L=0
operation of other systems
* Must send and/or receive data to or from another system M=2
* Must send and/or receive data to or from multiple systems H=3
4. Nature of system-to-system communications 1
e System has no external interfaces L=0
¢ Automated communications link using standard protocols M=2
¢ Automated communications link using nonstandard protocals H=3
5. Estimated system’s program size limitations 2
* Substantial unused capacity L=1
e Within capacity M=2
e Near limits of capacity H=3
6. Degree of specified input data control procedures 3
e Detailed error checking L=1
® General error checking M=2
¢ No error checking H=3
7. Type of system hardware to be installed 3
* No hardware needed NA=0
e Standard batch or on-line systems L=1
¢ Nonstandard peripherals M=2
* Nonstandard peripherals and mainframes H=3
8. Basis for selection of programming and system software 3
¢ Architectural analysis of functional and performance L=1
requirements
e Similar system development experience M=2
e Current inventory of system software and existing H=3

programming language skills
(continues)

94

Chapter 3

WORK PAPER 3-2 (continued)

TEST DOCUMENT

Technical Risk Assessment

Ratings: L-Low M -Medium H-High NA - Not Applicable

RATING x WEIGHT=

RISK RATINGS SCORE
9. Complexity of projected system 2
e Single function (e.g., word processing only) L=1
e Multiple but related function (e.g., message generation, M=2
editing, and dissemination)
e Multiple but not closely related functions (e.g., database H=3
query, statistical manipulation, graphics plotting, text editing)
10. Projected level of programming language 2
¢ High level, widely used L=1
¢ Low-level or machine language, widely used M=2
* Special-purpose language, extremely limited use H=3
11. Suitability of programming language to application(s) 2
e All modules can be coded in straightforward manner in L=1
chosen language
¢ All modules can be coded in a straightforward manner with H=3
few exit routines, sophisticated techniques, and so forth
e Significant number of exit routines, sophisticated techniques, H=3
and so forth are required to compensate for deficiencies in
language selected
12. Familiarity of hardware architecture 2
¢ Mainframe and peripherals widely used L=1
e Peripherals unfamiliar M=2
* Mainframe unfamiliar H=4
13. Degree of pioneering (extent to which new, difficult, and 5
unproven techniques are applied)
* Conservative: no untried system components; no pioneering L=1
system objectives or techniques
* Moderate: few important system components and functions H=3
are untried; few pioneering system objectives and techniques
e Aggressively pioneering: more than a few unproven hardware
or software components or system objectives H=3
14. Suitability of hardware to application environment 2
¢ Standard hardware NA=0
¢ Architecture highly comparable with required functions L=1
¢ Architecture sufficiently powerful but not particularly efficient M=2
¢ Architecture dictates complex software routines H=3

Building the Software Testing Process 95

WORK PAPER 3-2 (continued)

TEST DOCUMENT

Technical Risk Assessment

Ratings: L-Low M -Medium H-High NA - Not Applicable

RATING x WEIGHT=

RISK SCORE
15. Margin of error (need for perfect functioning, split-second 5
timing, and significant cooperation and coordination)
e Comfortable margin L=1
e Realistically demanding M=2
¢ Very demanding; unrealistic H=3
16. Familiarity of project team with operating software 2
e Considerable experience L=1
e Some experience or experience unknown M=2
e Little or no experience H=3
17. Familiarity of project team with system environment supporting 2
the application
* Considerable experience L=1
* Some experience or experience unknown M=2
e Little or no experience with:
Operating System H=3
DBMS H=3
Data Communications H=3
18. Knowledgeability of project team in the application area 2
* Previous experience L=1
e Conceptual understanding M=2
e Limited knowledge H=3
19. Type of test tools used 5
e Comprehensive test/debut software, including path analyzers L=1
¢ Formal, documented procedural tools only M=2
* None H=3
20. Realism of test environment 4
¢ Tests performed on operational system: total database and
communications environment
¢ Tests performed on separate development system: total
database, limited communications
¢ Tests performed on dissimilar development system: limited
database and limited communications
21. Communications interface change testing 4

¢ No interfaces required

e Live testing on actual line at operational transaction rates
¢ Loop testing on actual line, simulated transactions

e Line simulations within development system

—
—_

<
1I

T
N

w

(continues)

96 Chapter 3

WORK PAPER 3-2 (continued)

TEST DOCUMENT

Technical Risk Assessment

Ratings: L-Low M -Medium H-High NA - Not Applicable RATING x WEIGHT=
RISK RATINGS SCORE
22. Importance of user training to the success of the system 1
e Little training needed to use or operate system: L=1
documentation is sufficient for training
¢ Users and or operators need no formal training, but M=2
experience is required in addition to documentation
e Users essentially unable to operate system without formal, H=3

hands-on training in addition to documentation

23. Estimated degree of system adaptability to change 3
e High: structured programming techniques used: relatively L=1
unpatched, well documented
* Moderate M=2
e Low: monolithic program design, high degree of inner/ H=4

intrasystem dependency, unstructured development,
minimal documentation

Total | 61.00
PREPARED BY: DATE: Total Score / Total Weight = Risk Average

Building the Software Testing Process 97

WORK PAPER 3-3 Size Risk Assessment

TEST DOCUMENT

Size Risk Assessment

Ratings: L - Low M -Medium H-High NA - Not Applicable RATING x WEIGHT=
RISK RATINGS SCORE
1. Ranking of this project’s total worker-hours within the limits 3

established by the organization’s smallest and largest system
development projects (in number of worker-hours)

® Lower third of systems development projects L=1
¢ Middle third of systems development projects M=2
e Upper third of systems development projects H=3
2. Project implementation time 3
* 12 months or less L=1
¢ 13 months to 24 months M=2
* More than 24 months, with phased implementation H=3
* More than 24 months; no phasing H=4
3. Estimated project adherence to schedule 1
® Ahead of schedule L=1
e On schedule M=2
¢ Behind schedule (by three months or less) H=3
* Behind schedule (by more than three months) H=4
4. Number of systems interconnecting with the application 3
*1to2 L=1
e 3to5 M=2
* More than 5 H=3
5. Percentage of project resources allocated to system testing 2
* More than 40% L=1
e 20 to 40% M=2
e Less than 20% H=3
6. Number of interrelated logical data groupings (estimate 1
if unknown)
¢ Fewer than 4 L=1
* 4t06 M=2
* More than 6 H=3
7. Number of transaction types 1
* Fewer than 6 L=1
* 6to 25 M=2
* More than 25 H=3
8. Number of output reports 1
e Fewer than 10 L=1
* 10to 20 M=2
* More than 20 H=3

(continues)

98 Chapter 3

WORK PAPER 3-3 (continued)

TEST DOCUMENT

Size Risk Assessment

Ratings: L-Low M -Medium H-High NA - Not Applicable RATING x WEIGHT=
RISK RATINGS SCORE
9. Ranking of this project’s number of lines of program code to be 3

maintained within the limits established by the organization’s
smallest and largest systems development projects (in number
of lines of code)

¢ Lower third of systems development projects L=1
e Middle third of systems development projects M=2
e Upper third of systems development projects H=3

Total | 18.00
PREPARED BY: DATE: Total Score / Total Weight = Risk Average

Building the Software Testing Process 99

WORK PAPER 3-4 Risk Score Analysis

TEST DOCUMENT

Risk Score Analysis

APPLICATION SYSTEM

COMPARATIVE RATING WITH

SCORE COMPANY APPLICATIONS
RISK AREA COMMENTS
TOTAL | AVERAGE HIGH MEDIUM LOW
STRUCTURE
TECHNOLOGY
SIZE

TOTAL RISK SCORE

HIGH RISK ATTRIBUTES

RISK AREA RISK ATTRIBUTES TEST CONCERN

PREPARED BY: DATE:

100 Chapter 3

WORK PAPER 3-5 Testing Tactics Checklist

YES

NO

COMMENTS

10.

Did you use your test strategy as a guide for developing
the test tactics?

Did you decompose your strategy into test tactics?
(May not fully occur until the test planning step.)

Did you consider trade-offs between test factors when
developing test tactics (e.g., choosing between continuity
of processing and accuracy)?

Did you compare your test tactics to the test strategy to
ensure they support the strategy?

Have you identified the individuals who can perform

the tests?

Did you compose a strategy for recruiting those
individuals?

Did management agree to let the team members accept
the proposed responsibilities on your project team?

Has a test plan for testing been established? If so
does the test team have the following responsibilities:

Set test objectives.

Develop a test strategy.

Develop the test tactics.

Define the test resources.

Execute tests needed to achieve the test plan.

Modify the test plan and test execution as changes
occur.

Manage use of test resources.

Issue test reports.

Ensure the quality of the test process.
Maintain test statistics.

Does the test team adequately represent the
following:

User personnel
Operation’s staff

Data administration
Internal auditors
Quality assurance staff
Information technology
Management

Security administrator
Professional testers

Building the Software Testing Process

101

WORK PAPER 3-5 (continued)

YES

NO

COMMENTS

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.
29.

30.
31.
32.

Did you develop test team assignments for each
test member?

Does the test team accept responsibility for finding
users/customer type defects?

Does the test team accept responsibility for finding
defects?

Does the team recognize the benefit of removing defects
earlier in the correction life cycle process?

Will testing begin when the development process begins?
Does one person have primary responsibility for testing?
Will the test team perform validation tests?

Will the test team perform verification tests?

Will verification tests include requirement reviews?

Will verification tests include design reviews?

Will verification tests include code walkthroughs?

Will verification tests include code inspections?

Will validation tests include unit testing?

Will validation tests include integration testing?

Will validation tests include system testing?

Will validation tests include user acceptance testing?
Will testers develop a testers’ workbench?

Will the workbench identify the deliverables/products
to be tested?

Will the workbench include test procedures?

Will the workbench check accuracy of test
implementation?

Will you identify test deliverables?
Does your workbench identify the tools you’ll use?

Have the testers identified a source of these generic
test tools?

Selecting and Installing
Software Testing Tools

A tool can be defined as “anything that serves as a means to get something done.” It is
important to recognize that you first must determine what that something is before
acquiring a tool. Chapter 3 discussed the concept of a work process (the means for
accomplishing a testing objective). Within the work process would be one or more
tools to accomplish the objective. For example, in developing scripts, one might wish
to use a capture/playback tool.

This chapter describes the relationship between tools and work processes. The chap-
ter then explains the steps involved in selecting and installing a tool, as well as creating
a toolbox for testers. Finally, the chapter proposes how to train testing staff in the use of
tools, as well as designate a tool manager to provide testers the support they need in
using those tools.

Integrating Tools into the Tester's Work Processes

It is important to recognize the relationship between a tool and a technique. A technique
is a procedure for performing an operation; a fool is anything that serves as a means to
get something done. Let’s look at a non-testing example. If you want to attach two
pieces of wood together, you might choose a nail as the means for accomplishing that
bonding process. Joining the two pieces of wood together is a technique for building an
object; a nail is a tool used to join two pieces of wood together. A technique for insert-
ing the nail into the two pieces of wood might be a swinging motion hitting the nail on
the head; a hammer is a tool that would help that technique.

103

104

Chapter 4

Stress testing is a technique that a software tester might use to validate that software
can process large volumes of data. Tools that would be helpful in stress testing software
might include a test data generator or a capture/ playback tool for using and re-using
large amounts of test data.

Although software testing techniques are limited, software tools are almost unlim-
ited. Testers can select a variety of software tools to accomplish any specific software
testing technique, just as a carpenter could use tools such as nails, screws, or glue to
fasten two pieces of wood together.

.]ma This chapter will not discuss specific vendor tools. There are too many
operating platforms and too many vendor tools to effectively identify and
describe the availability of tools in this book. Search the Web for “software
testing tools” and you find a variety of sources to identify what is currently
available in the marketplace.

It is important that tools be integrated into the software tester’s work processes. The
use of tools should always be mandatory. This does not mean that an individual tester
may not select among several tools to accomplish a specific task, but rather that the
process should identify specific tools or provide the tester a choice of tools to accom-
plish a specific work task. However, for that work task, the tester must use one of the
tools specified in the work process.

Tools Available for Testing Software

This section is designed to cause you to think “outside of the box” regarding tools
available for software testing. When the concept of the software testing tool is dis-
cussed, many testers think of automated tools provided by vendors of testing software.
However, there are many manual tools available that can aid significantly in testing
software (for example, code inspections).

The objective of this discussion is to categorize the tools used by testers into generic
categories. A test script, for example, is a means for accomplishing some aspect of soft-
ware testing. There are both manual tools to help you create scripts, such as building
use cases, as well as automated tools that can both generate and execute a test script.

Testing tools are the aids used by individuals with testing responsibility to fulfill
that responsibility. The tools cover a wide range of activities and are applicable for use
in all phases of the systems development life cycle. Some of the techniques are manual,
some automated; some perform static tests, others dynamic; some evaluate the system
structure, and others, the system function.

The skill required to use the tools and the cost of executing the tools vary signifi-
cantly. Some of the skills are highly technical and involve in-depth knowledge of com-
puter programming and the system being tested. Other tools are general in nature and
are useful to almost anyone with testing responsibilities. Some techniques involve only
a short expenditure of man-hours, whereas others must be conducted by a team and
make heavy use of computer resources in the test process.

Selecting and Installing Software Testing Tools

105

The following is a list of the more common testing tools:

m Boundary value analysis. A method of dividing application systems into seg-
ments so that testing can occur within the boundaries of those segments. The
concept complements top-down system design.

m Capture/playback. A technique that enables you to capture the data and results
of testing, and then play it back for future tests.

m Cause-effect graphing. Attempts to show the effect of each test event processed.
The purpose is to categorize tests by the effect that will occur as a result of test-
ing. This should reduce the number of test conditions by eliminating the need
for multiple test events that all produce the same effects.

m Checklist. A series of probing questions designed to review a predetermined
area or function.

m Code comparison. Identifies differences between two versions of the same pro-
gram. You can use this tool with either object or source code.

m Compiler-based analysis. Utilizes the diagnostics produced by a compiler or
diagnostic routines added to a compiler to identify program defects during the
compilation of the program.

m Confirmation/examination. Verifies the correctness of many aspects of the sys-
tem by contacting third parties, such as users, or examining a document to ver-
ify that it exists.

m Control flow analysis. Requires the development of a graphic representation
of a program to analyze the branch logic within the program to identify logic
problems.

m Correctness proof. Involves developing a set of statements or hypotheses that
define the correctness of processing. These hypotheses are then tested to deter-
mine whether the application system performs processing in accordance with
these statements.

m Data dictionary. The documentation tool for recording data elements and the
attributes of the data elements that, under some implementations, can produce
test data to validate the system’s data edits.

m Data flow analysis. A method of ensuring that the data used by the program
has been properly defined, and that the defined data is properly used.

m Database. A repository of data collected for testing or about testing that can be
summarized, re-sequenced, and analyzed for test purposes.

m Design-based functional testing. Recognizes that functions within an applica-
tion system are necessary to support the requirements. This process identifies
those design-based functions for test purposes.

m Design reviews. Reviews conducted during the systems development process,
normally in accordance with systems development methodology. The primary
objective of design reviews is to ensure compliance to the design methodology.

106 Chapter 4

m Desk checking. Reviews by the originator of the requirements, design, or pro-
gram as a check on the work performed by that individual.

m Disaster test. A procedure that predetermines a disaster as a basis for testing
the recovery process. The test group then causes or simulates the disaster as a
basis for testing the procedures and training for the recovery process.

m Error guessing. Uses the experience or judgment of people to predict what the
most probable errors will be and then test to ensure that the system can handle
those test conditions.

m Executable specs. Requires a computer system for writing system specifica-
tions so that those specifications can be compiled into a testable program. The
compiled specs have less detail and precision than will the final implemented
programs, but they are sufficient to evaluate the completeness and proper func-
tioning of the specifications.

m Fact finding. Information needed to conduct a test or to ensure the correctness
of a document’s information, achieved through an investigative process requir-
ing obtaining information or searching for the facts about a predetermined
condition.

m Flowchart. Graphically represents the system and/or program flow in order to
evaluate the completeness of the requirements, design, or program specifications.

m Inspections. A highly structured step-by-step review of the deliverables pro-
duced by each phase of the systems development life cycle in order to identify
potential defects.

m Instrumentation. The use of monitors and/or counters to determine the fre-
quency with which predetermined events occur.

m Integrated test facility. A concept that permits the introduction of test data
into a production environment so that applications can be tested at the same
time they are running in production. The concept permits testing the accumula-
tion of data over many iterations of the process, and facilitates intersystem
testing.

m Mapping. A process that analyzes which parts of a computer program are exer-
cised during the test and how frequently each statement or routine in a program
is executed. This can be used to detect system flaws, determine how much of a
program is executed during testing, and identify areas where more efficient
code may reduce execution time.

m Modeling. A method of simulating the functioning of the application system
and/or its environment to determine if the design specifications will achieve
the system objectives.

m Parallel operation. Runs both the old and new version within the same time
frame in order to identify differences between the two processes. The tool is
most effective when there is minimal change between the old and new process-
ing versions of the system.

Selecting and Installing Software Testing Tools

107

Parallel simulation. Develops a less precise version of a segment of a com-
puter system in order to determine whether the results produced by the test
are reasonable. This tool is effective when used with large volumes of data to
automatically determine the correctness of the results of processing. Normally,
this tool approximates only actual processing

Peer review. A review process that uses peers to review that aspect of the sys-
tems development life cycle with which they are most familiar. Typically, the
peer review offers compliance to standards, procedures, guidelines, and the use
of good practices, as opposed to efficiency, effectiveness, and economy of the
design and implementation.

Ratios/relationships. Quantitative analysis that enables testers to draw conclu-
sions about some aspect of the software to validate the reasonableness of the
software. For example, in test planning, they may want to compare the pro-
posed test budget to the number of function points being tested.

Risk matrix. Tests the adequacy of controls through the identification of risks
and the controls implemented in each part of the application system to reduce
those risks to a level acceptable to the user.

Scoring. A method to determine which aspects of the application system
should be tested by determining the applicability of problem criteria to the
application being tested. The process can be used to determine the degree of
testing (for example, high-risk systems would be subject to more tests than
low-risk systems) or to identify areas within the application system to deter-
mine the amount of testing needed.

Snapshot. A method of printing the status of computer memory at predeter-
mined points during processing. Computer memory can be printed when
specific instructions are executed or when data with specific attributes are
processed.

Symbolic execution. Permits the testing of programs without test data. The
symbolic execution of a program results in an expression that can be used to
evaluate the completeness of the programming logic.

System logs. Uses information collected during the operation of a computer
system to analyze how well the system performed. System logs are produced
by operating software such as database management systems, operating sys-
tems, and job accounting systems.

Test data. System transactions that are created for the purpose of testing the
application system.

Test data generator. Software systems that can be used to automatically gener-
ate test data for test purposes. Frequently, these generators require only para-
meters of the data element values in order to generate large amounts of test
transactions.

Test scripts. A sequential series of actions that a user of an automated system
would enter to validate the correctness of software processing.

108 Chapter 4

m Tracing. A representation of the paths followed by computer programs as they
process data or the paths followed in a database to locate one or more pieces of
data used to produce a logical record for processing.

m Use cases. Test transactions that focus on how users will use the software in an
operational environment.

m Utility programs. A general-purpose software package that can be used to test
an application system. The most valuable utilities are those that analyze or list
data files.

m Walkthroughs. A process that asks the programmer or analyst to explain the
application system to a test team, typically by using a simulation of the execu-
tion of the application system. The objective of the walkthrough is to provide a
basis for questioning by the test team to identify defects.

Selecting and Using Test Tools

This chapter presents an extensive array of tools for systems testing. Many of these tools
have not been widely used. The principal reasons for this include: 1) specialized use (sim-
ulation); 2) the high cost of their use (symbolic execution); and 3) their unproven applica-
bility (correctness proof). Many of these tools represent the state of the art and are in areas
where research is continuing. However, this should not prevent organizations from exper-
imenting with some of the newer test concepts. The tools attracting the most interest and
activity at present include automated test support systems (capture/playback) and auto-
mated analysis (compiler-based analysis).

As better tools are developed for testing during the requirements and design phases
of software testing, an increase in automatic analysis is possible. In addition, more
sophisticated analysis tools are being applied to the code during construction. More
complete control and automation of the actual execution of tests, both in assistance in
generating the test cases and in the management of the testing process and result, are
also taking place.

It is important that testing occur throughout the software development life cycle.
One reason for the great success of disciplined manual techniques is the uniform applic-
ability at the requirements, design, and coding phases. These tools can be used without
massive capital expenditure. However, to be most effective they require a serious com-
mitment and a disciplined application. Careful planning, clearly stated testing objec-
tives, precisely defined tools, good management, organized record keeping, and a
strong commitment are critical to successful testing. A disciplined approach must be fol-
lowed during both planning and execution of the testing activities.

An integral part of this process is the selection of the appropriate testing tool. The
following four steps are involved in selecting the appropriate testing tool:

1. Match the tool to its use.
2. Select a tool appropriate to its life cycle phase.

Selecting and Installing Software Testing Tools

109

3. Match the tool to the tester’s skill level.
4. Select an affordable tool.

Matching the Tool to Its Use

The better a tool is suited to accomplish its task, the more efficient the test process will
be. The wrong tool not only decreases the efficiency of testing, it may not permit testers
to achieve their objectives. The test objective can be a specific task in executing tests,
such as using an Excel spreadsheet to track defects, or to accomplish the testing tech-
nique, such as stress testing, using a tool such as capture/playback.

The objective for using a tool should be integrated into the process in which the tool
is to be incorporated. Again, the tool is the means to accomplish a test objective. When
test processes are developed, a decision is made as to whether a specific task should be
performed manually or whether it can be more effectively and efficiently performed
using a test tool. The test process comes first, the test tool second.

In some instances, an IT testing organization will become aware of a testing tool that
offers an opportunity to do more effective testing than is currently being performed. It
may be necessary to modify the test process to incorporate the capabilities of the new
tool. In this instance, the tool will help determine the process. What is important is that
the tool is integrated into the process and not used externally to the process at the dis-
cretion of the tester.

As test processes are continually improved, new tools will be integrated into the
process. The search for and analysis of available tools is a continuous process. The objec-
tive is to improve the testing process by incorporating more effective and efficient tools.

You can use Work Paper 4-1 to identify the tools that will be considered for selection.
Note that this Work Paper does not contain all the tools that might be considered.

Chapter 8 describes a variety of testing techniques. Many of the tools used in testing
will be utilized to effectively perform those techniques. Again, stress testing is a tech-
nique for which tools are necessary to support a large volume of test data.

Selecting a Tool Appropriate to Its Life Cycle Phase

The type of testing varies by the life cycle in which it occurs. Just as the methods
change, so do the tools. Thus, it becomes necessary to select a tool appropriate for the
life cycle in which it will be used.

As the life cycle progresses, the tools tend to shift from manual to automatic. How-
ever, this should not imply that the manual tools are less effective than the automatic,
because some of the most productive testing can occur during the early phases of the
life cycle using manual tools.

Table 4-1 lists the life cycle phases in which the identified test tools are most effec-
tive. This matrix shows the 41 test tools and for which of the 6 systems development
life cycle phases each tool is most appropriate. You can use this matrix for the second
step of the selection process, in which the population of tools identified in the first step
can be reduced to those tools that are effective in the life cycle phase where the test will
be occurring.

110 Chapter 4

Table 4-1 SDLS Phase/Test Tool Matrix

TOOL SDLC PHASE

Require- Design Program Test Oper- Mainte-

ments ation nance
Boundary value analysis X X
Capture/playback X X
Cause-effect graphing X X
Checklist X X X X X X
Code comparison X
Compiler-based analysis X
Confirmation/examination X X X X X X
Control flow analysis X X
Correctness proof X X
Data dictionary X
Data flow analysis X
Database X X
Design-based functional X X
testing
Design reviews X
Desk checking X X X X
Disaster test X X
Error guessing X X X X X X
Executable specs X
Fact finding X X X X X X
Flowchart X X X
Inspections X X X X X X
Instrumentation X X X
Integrated test facility X
Mapping X
Modeling X X
Parallel operation X

Parallel simulation X

Selecting and Installing Software Testing Tools

111

Table 4-1 (continued)

TOOL SDLC PHASE

Require- Design Program Test Oper- Mainte-
ments ation nance

Peer review X X X X X X

Ratios/relationships X X

Risk matrix X X

Scoring X X

Snapshot X

Symbolic execution X

System logs

Test data X X

Test data generator

X | X [X | X

Test scripts

Tracing X

>

Use cases

X |[X [X [X | X | X [X

Utility programs X X
Walkthroughs X X X

Matching the Tool to the Tester’s Skill Level

The individual performing the test must select a tool that conforms to his or her skill
level. For example, it would be inappropriate for a user to select a tool that requires pro-
gramming skills when the user does not possess those skills. This does not mean that an
individual will not have to be trained before the tool can be used but rather that he or
she possesses the basic skills necessary to undertake training to use the tool. Table 4-2
presents the tools divided according to the skill required. This table divides skills into
user skill, programming skill, system skill, and technical skill.

m User skill. Requires the individual to have an in-depth knowledge of the appli-
cation and the business purpose for which that application is used. Skills
needed include general business specializing in the area computerized, general
management skills used to achieve the mission of the user area, and a knowl-
edge of identifying and dealing with user problems.

m Programming skill. Requires understanding of computer concepts, flowchart-
ing, programming in the languages used by the organization, debugging, and
documenting computer programs.

112 Chapter 4

m System skill. Requires the ability to translate user requirements into computer
system design specifications. Specific skills include flowcharting, problem
analysis, design methodologies, computer operations, some general business
skills, error identification and analysis in automated applications, and project
management. The individual normally possesses a programming skill.

m Technical skill. Requires an understanding of a highly technical specialty and
the ability to exhibit reasonable performance at that specialty.

Table 4-2 indicates which skills are required to execute which tools. In some instances,
different skills are needed to develop the tool, and if this is the case, that has been indi-
cated in the Comments column. The comments also indicate any skill qualification or
specific technical skill needed.

Table 4-2 Skill Levels for Using Testing Tools
SKILL TOOL COMMENTS
User skill Checklist

Integrated test facility

Peer review

Risk matrix

Scoring

Use case

Walkthroughs

Programmer skill Boundary value analysis

Capture playback
Checklist

Code comparison

Control flow analysis

Correctness proof

Coverage-based metric testing

Data dictionary

Data flow analysis

Database

Design-based functional testing

Desk checking

Error guessing

Selecting and Installing Software Testing Tools

113

Table 4-2 (continued)
SKILL TOOL

Flowchart

COMMENTS

Instrumentation

Mapping

Modeling

Parallel simulation

Peer review

Snapshot

Symbolic execution

System logs

Test data

Test data generator

Test scripts

Tracing

Volume testing

Walkthroughs

System skill Cause/effect graphing

Checklist

Confirmation/examination

Correctness proof

Design-based functional testing

Design reviews

Desk checking

Disaster test

Error guessing

Executable specs

Few such languages in

existence
Fact finding
Flowchart
Inspections Helpful to have application

knowledge

(continues)

114 Chapter 4

Table 4-2 (continued)

SKILL TOOL COMMENTS
Integrated test facility Skills needed to develop but
not using ITF
Mapping
Modeling

Parallel simulation

Peer review

System logs

Test data

Test scripts

Tracing

Volume testing

Walkthroughs

Technical skill Checklist
Coverage-based metric Requires statistical skill to
testing develop
Instrumentation System programmer skill
Parallel operation Requires operations skill
Peer review Must be taught how to

conduct review

Ratio/relationships Requires statistical skills to

identify, calculate, and
interpret the results of a
statistical analysis

Selecting an Affordable Tool

Typically, testing must be accomplished within a budget or time span. An extremely
time-consuming and hence costly tool, while desirable, may not be affordable under
the test budget and schedule. Therefore, the last selection criterion is to pick those tools
that are affordable from the population of tools remaining after the preceding step.
Work Paper 4-2 can be used to document selected tools.

Some test tools are extremely costly to execute, whereas others involve only nomi-
nal costs. It is difficult to put a specific price tag on many of the tools because they
require the acquisition of hardware or software, the cost of which may vary signifi-
cantly from vendor to vendor.

Selecting and Installing Software Testing Tools 115

Table 4-3 lists three categories of cost: high, medium, and low. Where costs are
extremely high or low, the Comments column is used to further clarify the cost category.

It is possible that you will have gone through the selection process and ended up with
no tools to select from. In this instance, you have two options. First, you can repeat the
process and be more generous in your selection criteria. In other words, be more inclined
to include tools as you move from step to step. Second, you can ignore the formal selec-
tion process and use judgment and experience to select the tool that appears most appro-
priate to accomplish the test objective.

Table 4-3 Cost To Use Testing Tools

COST TOOL COMMENTS

High Correctness proof
Coverage-based metric Cost to develop metrics is
testing high—not usage

Executable specs

Inspections

Modeling

Parallel operation

Parallel simulation

Symbolic execution

Test data Cost varies by volume of test
transactions

Medium Capture/playback

Cause-effect graphing

Code comparison Major cost is acquisition of utility
program

Control flow analysis

Database

Design-based functional

testing
Design reviews Cost varies with size of review team
Disaster test Cost varies with size of test

Instrumentation

Integrated test facility Major cost is building ITF

Mapping Software is major cost

(continues)

116 Chapter 4

Table 4-3 (continued)

COST TOOL COMMENTS
Peer review
Risk matrix
Snapshot Major cost is building snapshot
routines into programs
Systems logs Assumes logs already in operation
Test data generator Major cost is acquiring software

Test scripts

Utility programs Assumes utility already available

Volume testing

Walkthroughs Cost varies with size of
walkthrough team

Low Boundary value analysis Requires establishing boundaries
during development

Checklist

Compiler-based analysis

Confirmation/examination

Data dictionary Assumes cost of DD is not a test cost
Desk checking

Error guessing

Fact finding

Flowchart Assumes software is available

Ratio/relationship

Scoring

Training Testers in Tool Usage

Training testers in the use of test tools is a “no-brainer.” Not training testers in how to
use tools before they begin to use them in practice is like letting someone drive an auto-
mobile without any training: It’s dangerous. The danger is that cost can escalate unnec-
essarily and by misusing the test tools, testers may not perform effective testing.

It is recommended that test tools be used only by testers who have demonstrated
proficiency in their use. If it is necessary for the testers to use a tool in which they are

Selecting and Installing Software Testing Tools

117

not proficient, a mentor or supervisor should assist the tester in the use of that tool to
ensure its effective and efficient use.

Appointing Tool Managers

The objective of appointing a tool manager is twofold:

m More effective tool usage. Having a tool manager is, in fact, like establishing a
help desk for testers. Because the tool manager is knowledgeable in what the
tool does and how it works, that individual can speed the learning of other
users and assist with problems associated with the tool’s usage.

m Managerial training. The individual appointed to be a tool’s manager should
have total responsibility for that tool. This includes contacting the vendor, budget-
ing for maintenance and support, overseeing training, and providing supervisory
support. Being appointed a tool manager is an effective way to provide manager-
ial training for individuals; it is also effective in evaluating future managerial
candidates.

Managing a tool should involve budgeting, planning, training, and related manage-
rial responsibilities.

The workbench for managing testing tools using a tool manager is illustrated in Fig-
ure 4-1. The three steps involve appointing a tool manager; assigning the duties the tool
manager will perform; and limiting the tool manager’s tenure. This concept not only
facilitates the use of tools but builds future managers at the same time.

DO | CHECK

REWORK

Tool Task 1
Objectives

Test
Report

Select
Tool
Manager

!

> Task 2 —
Assign Tool
Manager
Duties

'

Candidates for Task 3
Tool Manager Limit Tool

Manager
Tenure

I

Figure 4-1 Tool manager's workbench for managing testing tools.

Tool
Manager
Effective

Managerial
Training

U

118 Chapter 4

Prerequisites to Creating a Tool Manager Position

Before appointing a tool manager, IT management should answer the following
questions:

Has management established objectives for the tool to be managed?
Has the use of the tool been specified in IT work procedures?

Has a training program been established for using the tool?

L

Have the potential candidates for tool manager been trained in the use of the
tool they would manage?

5. Have potential candidates for tool manager effectively used the tool in a pro-
duction environment?

6. Do the candidates for tool manager have managerial potential?
7. Does the individual selected for tool manager want to be manager of the tool?

8. Do the candidates for tool manager believe that this tool is effective in accom-
plishing the organization’s mission?
9. Does the candidate for manager have sufficient time to perform the tool man-
ager duties?
10. Have reasonable duties been assigned to the tool manager?

11. Does the tool manager understand and agree that these are reasonable duties to
perform?

12. Has a tenure been established on the length of service for tool managers?

Once management has determined that a specific tool is needed (and selected that
tool), a tool manager can be appointed. There are two inputs needed for this work-
bench: a clear definition of the objective for acquiring and using the tool, and a list of
potential tool manager candidates.

Tool usage should be mandatory. In other words, work processes should indicate
when to use a specific tool. The work process should indicate whether a tool user can
select among two or more recommended tools. The tool manager should not be in the
mode of marketing a tool but rather assisting and making tool usage more effective.

This section describes a three-step process for using a tool manager.

Selecting a Tool Manager

Ideally, the tool manager should be selected during the process of selecting the tool,
and have ownership in the selection decision. The tool manager should possess the
following;:

m Training skills

m Tool skills

m Managerial skills
m Planning

m Organizing

Selecting and Installing Software Testing Tools

119

m Directing

m Controlling

If the tool manager candidate lacks the preceding skills, they can be developed dur-
ing the tool manager tenure. If the tool manager position is used to train future man-
agers, technical proficiency and competency in tool usage is the only real requirement.
The other skills can be developed during the tenure as tool manager. A mentor must be
assigned to a tool manager to develop the missing skills.

In addition to the tool manager, an assistant tool manager should also be named for
each tool. This individual will not have any direct managerial responsibilities but will
serve as backup for the tool manager. The primary responsibility of the assistant tool
manager will be to gain competency in the use of the tool. Normally, the assistant tool
manager is a more junior employee than the tool manager. The assistant is the most
logical person to become the next manager for the tool.

Assigning the Tool Manager Duties
A tool manager can be assigned any or all of the following duties:

m Assist colleagues in the use of the tool. The tool manager should be available to
assist other staff members in the use of the tool. This is normally done using a
“hotline.” Individuals having problems using the tool or experiencing opera-
tional problems with the tool can call the tool manager for assistance. Note: The
hours of “hotline” activities may be restricted; for example, 8 to 9 A.M. and 2 to
5 p.M. This restriction will be dependent upon the other responsibilities of the tool
manager and the expected frequency of the calls.

m Train testers how to use the tool. The initial tool training normally comes from
the vendor. However, additional tool training is the responsibility of the tool
manager. Note that the tool manager may subcontract this training to the train-
ing department, the tool vendor, or other competent people. The tool manager
has the responsibility to ensure the training occurs and may or may not do it
personally.

m Act as the tool vendor’s contact. The tool manager would be the official contact
for the tool vendor. Questions from staff regarding the use of the tool that can
only be answered by the vendor should be funneled through the tool manager
to the vendor. Likewise, information from the vendor to the company should
be directed through the tool manager.

m Develop annual tool plans. The tool manager should develop an annual tool
plan complete with planned tool usage, schedule, and resources needed to
effectively utilize the tool. Tool managers may want to define penetration goals
(the percent of the department that will use the tool by the end of the planning
period) and should budget for upgrades, training, and other expenditures
involved in tool usage. The tool manager’s time should be budgeted and
accounted for.

m Install tool upgrades. As vendors issue new versions of the tool, the tool man-
ager is responsible for ensuring that those upgrades are properly incorporated

120 Chapter 4

and that the involved parties are made aware and trained, if necessary. Note
that the tool manager may not have to do a lot of this personally but is responsi-
ble to make sure it happens.

m Prepare annual reports. At the end of each year, or planning period, the tool
manager should prepare for IT management an overview of the use of the tool
during the year. This will require the tool manager to maintain statistics on tool
usage, problems, costs, upgrades, and so forth. (Note that tool usage for main-
frame tools can normally be obtained from job accounting software systems.
Non-mainframe usage may have to be estimated.)

m Determine timing of tool replacements. The tool manager, being responsible
for a specific software tool, should also be responsible for determining when
the tool is no longer effective or when better tools can be acquired to replace it.
When these situations occur, the tool manager should prepare proposals to
senior IT management regarding tool replacement.

The role of a tool manager can be enhanced in the following ways:

m Allow individuals adequate time to perform the tool manager’s role. The
assignment of a tool manager should be scheduled and budgeted so that the
individual knows the amount of time and resources that can be allocated to it.

m Incorporate tool manager performance into individual performance appraisals.
The performance of the tool manager’s duties should be considered an important
part of an individual’s work.

Limiting the Tool Manager's Tenure

It is recommended that an individual serve two years as a manager for a specific tool.
The rationale for the two years is that individuals tend to lose interest over a period of
time. Also, after a period of time, the manager tends to lose perspective of new uses for
the tool or deficiencies in the tool. Bringing in a new tool manager every two years
tends to revitalize the use of that tool in the organization. Note that the tool managers
can be transferred to manage another tool.

In instances where tools are highly specialized, very complex, or have minimal usage,
it may be desirable to keep an individual manager for longer than a two-year period.

Summary

Efficient testing necessitates the use of testing tools. Each testing organization should
have a portfolio of tools used in testing. This chapter described the more common soft-
ware-testing tools. It also proposed the establishment of a test manager function for
each tool.

The selection of the appropriate tool in testing is an important aspect of the test
process. Techniques are few in number and broad in scope, whereas tools are large in
number and narrow in scope. Each provides different capabilities; each tool is designed
to accomplish a specific testing objective.

Selecting and Installing Software Testing Tools

121

WORK PAPER 4-1 Selecting Tools

Tool

Include in Tester's
Toolbox?

Use Yes No

Boundary
value analysis

Divides system top down into logical segments and then
limits testing within the boundaries of each segment.

Capture/
playback

Testing used to capture transactions from the testing
process for re-use in future tests.

Cause-effect

Limits the number of test transactions by determining

graphing which of the number of variable conditions pose minimal
risk based on system actions.

Checklist Provides a series of questions designed to probe potential
system problem areas.

Code Compares two versions of the same program in order to

comparison identify differences between the two versions.

Compiler-based
analysis

Detects errors during the program-compilation process.

Confirmation/

Verifies that a condition has or has not occurred.

examination

Control flow Identifies processing inconsistencies, such as routines with

analysis no entry point, potentially unending loops, branches into
the middle of a routine, and so on.

Correctness Requires a proof hypothesis to be defined and then used

proof to evaluate the correctness of the system.

Data dictionary

Generates test data to verify data validation programs
based on the data contained in the dictionary.

Data flow Identifies defined data not used and used data
analysis that is not defined.
Database Repository for collecting information for or about

testing for later use analysis

Design-based
functional
testing

Evaluates functions attributable to the design process as
opposed to design requirements; for example, capability
may be a design process.

Design reviews

Requires reviews at predetermined points throughout systems
development in order to examine progress and ensure the
development process is followed.

(continues)

122

Chapter 4

WORK PAPER 4-1 (continued)

Tool

Include in Tester's
Toolbox?

Use Yes No

Desk checking

Provides an evaluation by programmer or analyst of the
propriety of program logic after the program is coded or
the system is designed.

Disaster test

Simulates an operational or systems failure to determine if
the system can be correctly recovered after the failure.

Error guessing

Relies on the experience of testers and the organization’s
history of problems to create test transactions that have
a high probability of detecting an error.

Executable Provides a high-level interpretation of the system specs in

specs order to create the response to test data. Interpretation of
expected software packages requires system specs to be
written in a high-level language.

Fact finding Performs those steps necessary to obtain facts to support
the test process.

Flowchart Pictorially represents computer systems logic and data flow.

Inspections Requires a step-by-step explanation of the product with

each step checked against a predetermined list of criteria.

Instrumentation

Measures the functioning of a system structure by using
counters and other monitoring instruments.

Integrated Permits the integration of test data in a production

test facility environment to enable testing to run during production
processing.

Mapping Identifies which part of a program is exercised during
a test and at what frequency.

Modeling Simulates the functioning of the environment or system
structure in order to determine how efficiently the
proposed system solution will function.

Parallel Verifies that the old and new version of the application

operation system produce equal or reconcilable results.

Parallel Approximates the expected results of processing by

simulation simulating the process to determine if test results

are reasonable.

Selecting and Installing Software Testing Tools

123

WORK PAPER 4-1 (continued)

Include in Tester's

Toolbox?
Tool Use Yes No
Peer review Provides an assessment by peers of the efficiency, style,
adherence to standards, and so on of the product that
is designed to improve the quality of the product.
Ratio/ To provide a high-level proof quantitatively that some

Relationships

aspect of the software or testing is reasonable.

Risk matrix Produces a matrix showing the relationship between system
risk, the segment of the system where the risk occurs, and
the presence or absence of controls to reduce that risk.

Scoring Identifies areas in the application that require testing,
through the rating of criteria that have been shown
to correlate to problems.

Snapshot Shows the content of computer storage at predetermined
points during processing.

Symbolic Identifies processing paths by testing the programs with

execution symbolic rather than actual test data.

System logs Provides an audit trail of monitored events occurring in
the environment area controlled by system software.

Test data Creates transactions for use in determining the functioning
of a computer system.

Test data Provides test transactions based on the parameters that

generator need to be tested.

Test scripts

Creating test transactions in the sequence in which those
transactions will be processed for an online software system.

Tracing

Follows and lists the flow of processing and database searches.

Use case

Preparing test conditions that represent real world uses
of the software.

Volume testing

Identifies system restriction (e.g., internal table size) and then
creates a large volume of transactions that exceed those limits.

Walkthroughs

Leads a test team through a manual simulation of the
product using test transactions.

124 Chapter 4

WORK PAPER 4-2 Documenting Tools

Tool Name:

Tool Vendor:

Tool Capabilities:

Tool Purpose:

Process That Will Use Tool:

Tool Training Availability:

Tool Limitations:

Building Software
Tester Competency

Effective software testing will not occur unless the testers are confident. They must be
confident in both testing basics and the use of their organization’s testing process and
tools. It is as important to build the competency of the individual testers as it is to build
test processes and acquire test tools.

Many colleges and universities that offer curriculums in computer science do not
include courses on software testing. In many IT organizations, it is assumed that if you
can build software, you can test it. This concept is changing, albeit slowly.

The emphasis in this chapter will be on building the competency of the software
tester. The chapter will use the Common Body of Knowledge (CBOK) for the Certified
Software Tester (CSTE) designation offered by Software Certifications (www . software
certifications.org) and administered by the Quality Assurance Institute (www
.gaiusa.com).

What Is a Common Body of Knowledge?

Many professions have the following characteristics in common:
m A common body of knowledge
m A code of ethics
= An examination to demonstrate competency

m Continuing professional education

125

126 Chapter 5

Normally, senior members of the profession establish the board to oversee certifica-
tion. This board comprises individuals well respected within their profession, who
then define the CBOK, administer the certification examination, develop the code of
ethics, and oversee the profession’s continuing education policies and the conduct of
the certified professionals.

Software Certifications, an organization that offers IT certifications, recently approved
the 2006 Common Body of Knowledge for Software Testers. The new CBOK contains ten
knowledge categories, each of which will be discussed in this chapter.

The CBOK is what the certification board believes individuals need to know to prac-
tice software testing effectively. If, based on results of the CSTE examination, it is deter-
mined that an individual is competent in software testing, that individual will receive
a certification in software testing.

Who Is Responsible for the Software
Tester's Competency?

IT management is responsible for the competency of software testers. They, or their des-
ignated subordinates, develop job descriptions for software testers, select the individuals
who will become software testers, and approve the necessary resources for training.

This, of course, does not preclude the individual’s responsibility for competency.
Would-be software testers need to demonstrate to management that they have the nec-
essary competency to practice software testing. This competency can be obtained by self-
study or by formal study paid for by the tester and conducted on his or her time.
Competency can also be obtained on the employer’s cost and time.

How Is Personal Competency
Used in Job Performance?

To understand the role of personal competency in effective job performance, you need
to understand the continuum of work processes (see Figure 5-1). A work process com-
prises both personal competency and the maturity or effectiveness of the work process.
Maturity of the work process defines the amount of variance expected when the work
procedures are followed precisely. Implicit in process maturity is the worker’s ability
to understand and follow the process.

Personal competency is the experience that the worker brings to the job. This expe-
rience is assumed in the process, but not integrated into the process. For example, the
process to write a computer program in a particular language assumes that the pro-
grammer knows how to code in that language and thus the focus is on how the lan-
guage is used, not how to use the language. Consider a non-IT example: When
performing an operation on an individual, it is assumed that the doctor has been
trained in surgery prior to following the surgical process in a specific hospital.

Building Software Tester Competency

127

Process maturity

Worker competency

Manufacturing Job Shop Professional
Processes Processes Processes

Figure 5-1 Continuum of work processes.

As shown in Figure 5-1, the processes in a manufacturing environment are very
mature and require workers to be only minimally competent. One would expect a
worker whose responsibility is simply to follow a routine series of steps to recognize
any obvious deviations. For example, if an auto worker is confronted with three black
tires and one yellow tire, he should speak up.

In a “job shop” environment, on the other hand, no two like products are created
(although the products are similar), so greater personal competency is required than in
a manufacturing environment.

Professional work processes require extensive personal competency and less mature
work processes. For most IT organizations, software testing is a professional work
process. In many IT organizations, the testing processes serve more as guidelines than
step-by-step procedures for conducting tests. For example, the testing process may
state that all branches in a computer program should be tested. If a tester saw a large
number of very similar decision instructions, it may be more prudent to perform other
tests rather than testing each processing decision both ways.

Using the 2006 CSTE CBOK
The CSTE CBOK can be used for any of the following purposes:

m Developing the job description for software testers

m Assessing an individual’s competency in software testing

m Developing an examination to evaluate an individual’s competency
-

Formulating a curriculum to improve an individual’s software testing
competency

Work Paper 5-1 presents the discussion draft of the 2006 CSTE CBOK in a format
that will enable you to identify skills in which you are competent and those you need
to improve. Each Knowledge Category in the CBOK lists multiple skills. For example,

128 Chapter 5

Knowledge Category 1, “Software Testing Principles and Concepts,” requires testers to
be proficient in the vocabulary of testing.
For each skill, you should make one of the following three assessments:

m Not Competent. It is a skill you do not have or a skill you do not believe you
could use in the process of testing software. For example, for the vocabulary
skill, you do not have a sufficient vocabulary to adequately discuss the job of
software testing. Terms such as “regression testing,” “black box testing,” and
“boundary value analysis” are not within your vocabulary.

m Competent. You have learned the skill but have not practiced it sufficiently to
believe you have fully mastered the skill. For example, you understand regres-
sion testing and know what to do, but you have not practiced it enough to feel
you could perform it effectively.

m Fully Competent. You understand the skill, know what to do, and feel very
confident that you can perform the skill effectively. For example, you can
develop and execute a regression test with high confidence that you can iden-
tify changes that occurred in the unchanged portion of the software.

At this point, read each skill in Work Paper 5-1 and assess your competency in one
of the three assessment categories.

To develop a competency score, total the number of skills you have checked in each of
the three columns. Then, at the bottom of Work Paper 5-2, multiply the number of skills
checked in the Fully Competent column by 3; multiply the number of skills in the Com-
petent column by 2; and multiply the number of skills in the Not Competent column by
1. Total those three amounts and divide by 120 (the number of skills assessed).

The number produced will be between one and three. A score of three indicates that
you are a world-class software tester, whereas a score of one means that you are not
competent in software testing. If your score is between one and two, you do not have
the basic skills necessary to perform software testing; if your score is between 2 and 3,
you should consider yourself a software tester. The closer your score comes to a three,
the more competent you are.

Developing a Training Curriculum

Every software testing organization should develop a curriculum for training software
testers. When an individual is hired or transferred to become a software tester, that
individual’s skill competency should be assessed. The competency assessment on
Work Papers 5-1 and 5-2 can be used for that purpose. Based on that assessment, the
individual can be placed into the curriculum at the appropriate point.

The following is a proposed curriculum to move individuals from “not competent”
to “fully competent.”

m Course 1: The Basics of Software Testing. Individuals need a basic under-
standing of the vocabulary, principles, and concepts for testing. Consider a job
in the math profession: The basics include the ability to add, subtract, multiply,

Building Software Tester Competency

and divide. Without these basic abilities, it would be difficult to perform any
significant mathematical computation. Likewise, without mastering the basics
of software testing, one could not test effectively.

m Course 2: The Process for Testing the Software System. Testers need to know
the right way to test a software project. Without an understanding of how to
prepare for testing or how to develop and execute a test plan, testers might just
prepare and run test conditions. The equivalent to this course is the seven-step
testing process presented in this book.

m Course 3: Software Testing Tools. If the tester’s organization uses tools to test
software, the tester should become proficient in the use of those tools. It is rec-
ommended that testers not be allowed to use a specific tool until they have
been sulfficiently trained.

m Course 4: Test Case Design. Preparing the appropriate test cases is an impor-
tant part of testing software. Testers need to know sources of test data, the vari-
ous types of test data that can be prepared (for example, use cases), and how to
prepare, use, and maintain those test cases.

m Course 5: Variance Analysis and Defect Tracking. Testers need to know how
to identify a variance from expected processes. Once they have identified the
variance, testers need to know how to document that variance and how to
track it until appropriate action has been taken.

m Course 6: Preparing Test Reports. Testers need to know the type of reports that
should be prepared, how to prepare them, who should get them, and how to
present them in an acceptable manner.

m Course 7: Test Process Improvement. Testers need to know how to use the
results of testing many different projects to identify opportunities for improv-
ing the testing process.

.:Im QAI offers public, in-house, and e-learning courses to assist you in
improving your competency in software testing. For more information, visit

www.gaiworldwide. org.

Table 5-1 cross-references the seven courses described in this chapter to the corre-
sponding chapters in the book. If testers do not go to a formal course, a mentor should
be assigned to help them master the material for each of the courses.

Using the CBOK to Build an Effective Testing Team

You can use Work Paper 5-3 to create a team that has mastery of all the competencies in
the CSTE CBOK. Simply transfer the rating number you developed in Work Paper 5-2 to
the corresponding columns for each team member. For example, if team member A was
deemed “Competent” in Knowledge Category 1, then enter 2 in the corresponding col-
umn of Work Paper 5-3.

130 Chapter 5

Table 5-1 Chapters Supporting the Software Tester’s Curriculum

COURSE NAME SEE CHAPTER(S)

Course 1: The Basics of Software Testing 1-13
Course 2: The Process for Testing the Software System 6-13
Course 3: Software Testing Tools 4
Course 4: Test Case Design 9-10
Course 5: Variance Analysis and Defect Tracking 11
Course 6: Preparing Test Reports 11
Course 7: Test Process Improvement 4,23

After all the team members’ ratings are recorded, you can determine whether there is
adequate competency in each of the knowledge categories deemed necessary for this
specific software project. For example, if knowledge of testing security was not necessary
for a specific project, team members would not have to be competent in that particular
knowledge category.

Generally, you would look for at least one member to be fully competent in each of
the knowledge categories needed. However, if no one is fully competent in a specific
skill category, having two or more individuals who are partially competent in that cat-
egory would probably be adequate to make the team effective.

If the proposed software testing team does not have the necessary competency, you
should take one of the following actions:

m Replace one member with another tester who possesses the needed competency.
m Add another tester to the team with the needed competency.

m Assign a mentor to work with one or more team members to help them in test-
ing tasks in which that knowledge competency is needed.

The following are additional guidelines that can help to build an effective team:

= You can match team personalities by using techniques such as the Myers-
Briggs Type Indicator (MBTI).

m]t is better to have a smaller test team than to add a tester who has a very nega-
tive attitude about testing or the assignment, which demoralizes the team and
requires extra supervisory effort.

m The number one skill for success in software testing is the ability to communi-
cate. Any member of the test team who will interact with developers and/or
users should be an effective communicator.

m Test teams are most effective when there is only one leader. If two members
want to set direction for the test team, conflict usually occurs.

Building Software Tester Competency

131

Summary

Effective testing cannot occur unless the testers are competent. The best measure of a
tester’s competency is to assess him or her using the CSTE CBOK, which represents the
most current thinking in software tester competency. You can use the results of this
assessment for two purposes. The first is to determine the strengths and weaknesses of
an individual software tester so that the plan can be developed to improve his or her
competency. Second, you can use the assessment to help build a software testing team,
which, as a group, has the necessary competency to test a specific software project.

132

Chapter 5

WORK PAPER 5-1 2006 Common Body of Knowledge

Knowledge Category 1: Software Testing Principles and Concepts The “basics” of software
testing are represented by the vocabulary of testing, testing approaches, methods, and techniques,
as well as the materials used by testers in performing their test activities.

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

1 Testing Techniques

Understanding the various approaches
used in testing, including static (e.g.,
desk checking), white-box (logic-driven),
black-box (requirements-driven), load
testing, coverage testing, and regression
testing. Also included are the methods
for designing and conducting tests.

2 Levels of Testing

Identifying testing levels such as unit,
performance, string, integration, systems
recovery, acceptance, parallel,
performance, and interface testing.

3 Testing Different Types of Software
The changes in the approach to testing
when testing different development
approaches such as batch processing,
client/server, Web-based, object-
oriented, and wireless systems.

4 Independent Testing
Testing by individuals other than those
involved in product/system development.

5 Vocabulary

The technical terms used to describe
various testing techniques, tools,
principles, concepts, and activities.

6 The Multiple Roles of Software
Testers

The objectives that can be incorporated
into the mission of software testers. This
would include the testing to determine
whether requirements are met, testing
effectiveness and efficiency, testing user
needs versus software specifications, and
testing software attributes such as
maintainability, ease of use, and
reliability.

Building Software Tester Competency

133

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

7 Testers Workbench

An overview of the process that testers
use to perform a specific test activity,
such as developing a test plan or
preparing test data.

8 The V Concept of Testing

The V concept relates the build
components of the development phases
to the test components that occur
during the test phases.

Knowledge Category 2: Building the Test Environment The test environment comprises all
the conditions, circumstances, and influences surrounding and affecting software testing. The
environment includes the organization’s policies, procedures, culture, attitudes, rewards, test
processes, test tools, methods for developing and improving test processes, management’s support
of software testing, as well as any test labs developed for the purpose of testing software and multiple
operating environments. This category also includes ensuring the test environment fairly represents
the production environment.

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

1 Knowledge of Test Process Selection
and Analysis

Concepts of Test Processes—The concepts
of policies, standards, and procedures,
and their integration into the test process.

Test Process Selection—Selecting processes
that lead to efficient and effective testing
activities and products.

Acquisition or Development of a Test Bed/
Test Lab/Test Processes—Designing,
developing, and acquiring a test
environment that simulates the “real”
world, including the capability to create
and maintain test data.

Quality Control—Testing quality control
to ensure that the test process has been
performed correctly.

(continues)

134 Chapter 5

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

Test Process Analysis—Analyzing the test
process to ensure

a. lts effectiveness and efficiency

b. Test objectives are applicable,
reasonable, adequate, feasible, and
affordable

c. The test program meets the test
objectives

d. The correct test program is being
applied to the project

e. The test methodology, including the
processes, infrastructure, tools,
methods, and planned work products
and reviews, is adequate to ensure
that the test program is conducted
correctly

f. Test progress, performance, and
process adherence are assessed to
determine the adequacy of the test
program

g. Adequate, not excessive, testing is
performed

Continuous Improvement—Ildentifying and
making improvements to the test process
using formal process improvement
processes.

Adapting the Test Environment to Different
Software Development Methodologies—
Establishing the environment to properly
test the methodologies used to build
software systems, such as waterfall, Web-
based, object-oriented, agile, and

so forth.

Competency of the Software Testers—
Providing the training necessary to ensure
that software testers are competent in the
processes and tools included in the test
environment.

Building Software Tester Competency

135

WORK PAPER 5-1 (continued)

FULLY
COMPETENT

PARTIALLY
COMPETENT

NOT
COMPETENT

Test Tools

Tool Development and/or Acquisition—
Understanding the processes for
developing and acquiring test tools.

Tool Usage—Understanding how tools are
used for automated regression testing,
defect management, performance/load
testing; understanding manual tools such
as checklists, test scripts, and decision
tables; using traceability tools, code
coverage, and test case management.

Management Support for Effective
Software Testing

Creating a tone that encourages testers
to work in an efficient and effective
manner.

Aligning test processes with
organizational goals, business objectives,
release cycles, and different
developmental methodologies.

Knowledge Category 3: Managing the Test Project Software testing is a project with almost
all the same attributes as a software development project. Software testing involves project planning,
project staffing, scheduling and budgeting, communicating, assigning and monitoring work, and

ensuring that changes to the project plan are incorporated into the test plan.

FULLY
COMPETENT

PARTIALLY
COMPETENT

NOT
COMPETENT

1 Test Planning, Scheduling, and
Budgeting

are aligned with organizational goals,

and different development
methodologies.

Alignment—Ensuring the test processes

user business objectives, release cycles,

Test Performance—Monitoring test

schedule and budget, reallocating
resources as required, and averting
undesirable trends.

performance for adherence to the plan,

(continues)

136 Chapter 5

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

Staffing—Acquiring, training, and
retaining a competent test staff.

Management of Staff—Keeping staff
appropriately informed, and effectively
utilizing the test staff.

Differences Between Traditional
Management—Using a hierarchical
structure versus quality management
using a flattened organization structure.

2 Personal and Organizational
Effectiveness

Communication Skills

a. Written Communication—Providing
written confirmation and explanation
of a variance from expectations.
Being able to describe on paper a
sequence of events to reproduce the
defect.

b. Oral Communication—Demonstrating
the ability to articulate a sequence of
events in an organized and
understandable manner.

c. Listening Skills—Actively listening to
what is said, asking for clarification
when needed, and providing
feedback.

d. Interviewing Skills—Developing and
asking questions for the purpose of
collecting data for analysis or
evaluation.

e. Analyzing Skills—Determining how to
use the information received.

Building Software Tester Competency 137

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

Personal Effectiveness Skills

a. Negotiation—Working effectively with
one or more parties to develop
options that will satisfy all parties.

b. Conflict Resolution—Bringing a
situation into focus and satisfactorily
concluding a disagreement or
difference of opinion between parties.

c. Influence and Motivation—Influencing
others to participate in a goal-
oriented activity.

d. Judgment—Applying beliefs,
standards, guidelines, policies,
procedures, and values to a decision.

e. Facilitation—Helping a group to
achieve its goals by providing
objective guidance.

Project Relationships—Developing an
effective working relationship with
project management, software
customers, and users.

Recognition—Showing appreciation to
individuals and teams for work
accomplished.

Motivation—Encouraging individuals to
do the right thing and do it effectively
and efficiently.

Mentoring—Working with testers to
ensure they master the needed skills.

Management and Quality Principles—
Understanding the principles needed to
build a world-class testing organization.

(continues)

138 Chapter 5

WORK PAPER 5-1 (continued)

FULLY
COMPETENT

PARTIALLY
COMPETENT

NOT
COMPETENT

3 Leadership

Meeting Chairing—Organizing and
conducting meetings to provide
maximum productivity over the shortest
time period.

Facilitation—Helping the progress of an
event or activity. Formal facilitation
includes well-defined roles, an objective
facilitator, a structured meeting,
decision-making by consensus, and
defined goals to be achieved.

Team Building—Aiding a group in
defining a common goal and working
together to improve team effectiveness.

Knowledge Category 4: Test Planning Testers need the skills to plan tests. Test planning
assesses the business and technical risks of the software application and then develops a plan to
determine if the software minimizing those risks. Test planners must understand the development

methods and environment to effectively plan for testing.

FULLY
COMPETENT

PARTIALLY
COMPETENT

NOT
COMPETENT

1 Prerequisites to Test Planning

Identifying Software Risks—Demonstrating
knowledge of the most common risks
associated with software development.

Identifying Testing Risks—Demonstrating
knowledge of the most common risks
associated with software testing.

Identifying Premature Release Risk—
Understanding how to determine the risk
associated with releasing unsatisfactory,
untested software products.

Risk Contributors—Identifying the
contributors to risk.

Identifying Business Risks—Demonstrating
knowledge of the most common risks
associated with the business using the
software.

Building Software Tester Competency 139

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

Risk Methods—Understanding of the
strategies and approaches for identifying
risks or problems associated with
implementing and operating information
technology, products, and processes;
assessing their likelihood, and initiating
strategies to test for those risks.

Risk Magnitude—Demonstrating the
ability to calculate and rank the severity
of a risk quantitatively.

Risk Reduction Methods—Understanding
the strategies and approaches that can

be used to minimize the magnitude of

a risk.

Contingency Planning—Planning to
reduce the magnitude of a known risk.

2 Test Planning Entrance Criteria

Success Criteria/Acceptance Criteria—
Understanding the criteria that must be
validated to provide user management
with the information needed to make an
acceptance decision.

Test Objectives—Understanding the
objectives to be accomplished through
testing.

Assumptions—Establishing the conditions
that must exist for testing to be
comprehensive and on schedule.

Issues—Identifying specific situations/
products/processes that, unless
mitigated, will impact forward progress.

Constraints—Limiting factors to success.

Entrance Criteria/Exit Criteria—
Understanding the criteria that must be
met prior to moving software to the next
level of testing or into production.

(continues)

140 Chapter 5

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

Test Scope—Understanding what is to be
tested.

Test Plan—Understanding the activities
and deliverables to meet a test’s
objectives.

Requirements/Traceability—Defining the
tests needed and relating them to the
requirements to be validated.

Estimating—Determining the resources
and timeframes required to accomplish
the planned activities.

Scheduling—Establishing milestones for
completing the testing effort and their
dependencies on meeting the rest of the
schedule.

Staffing—Selecting the size and
competency of the staff needed to
achieve the test plan objectives.

Test Check Procedures—Incorporating test
cases to ensure that tests are performed
correctly.

Software Configuration Management—
Organizing the components of a
software system, including
documentation, so that they fit together
in working order.

Change Management—Modifying and
controlling the test plan in relationship
to actual progress and scope of system
development.

Version Control—Understanding the
methods to control, monitor, and
achieve change.

Building Software Tester Competency

141

WORK PAPER 5-1 (continued)

Knowledge Category 5: Executing the Test Plan This category addresses the skills required to

execute tests, design test cases, use test tools, and monitor testing.

FULLY
COMPETENT

PARTIALLY
COMPETENT

NOT
COMPETENT

1 Test Design and Test Data/Scripts

Preparation

plan.

Specifications—Ensuring test data scripts
meet the objectives included in the test

of the product. Determination of the
expected result for each test case.

Cases—Developing test cases, including
techniques and approaches for validation

strategies and attributes.

Test Design—Understanding test design

Scripts—Developing the online steps to
be performed in testing; focusing on the
purpose and preparation of procedures;
emphasizing entrance and exit criteria.

testing requirements.

Data—Developing test inputs; using data
generation tools; determining the data
set or sub-sets to ensure a comprehensive
test of the system; determining data that
suits boundary value analysis and stress

objectives in the test plan to specific
system components.

Test Coverage—Achieving the coverage

Platforms—Ildentifying the minimum

the test must function.

configuration and platforms on which

Test Cycle Strategy—Determining the
during the test execution phase of

will occur during each test cycle.

number of test cycles to be conducted

testing; determining what type of testing

(continues)

142 Chapter 5

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

2 Performing Tests

Execute Tests—Performing the activities
necessary to execute tests in accordance
with the test plan and test design—
including setting up tests, preparing test
data base(s), obtaining technical
support, and scheduling resources.

Compare Actual Versus Expected Results—
Determining whether the actual results
meet expectations.

Documenting Test Results—Recording test
results in the appropriate format.

Use of Test Results—Understanding how
test results should be used and who has
access to them.

3 Defect Tracking

Defect Recording—Recording defects to
describe and quantify deviations from
requirements/expectations.

Defect Reporting—Reporting the status of
defects, including severity and location.

Defect Tracking—Monitoring defects from
the time of recording until satisfactory
resolution has been determined and
implemented.

4 | Testing Software Changes

Static Testing—Evaluating changed code
and associated documentation at the
end of the change process to ensure
correct implementation.

Regression Testing—Testing the whole
product to ensure that unchanged
functionality performs as it did prior to
implementing a change.

Building Software Tester Competency

143

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

Verification—Reviewing requirements,
design, and associated documentation to
ensure they are updated correctly as a
result of the change.

Knowledge Category 6: Test Status, Analysis, and Reporting Testers need to demonstrate
the ability to develop status reports. These reports should show the status of the testing based on the
test plan. Reporting should document what tests have been performed and the status of those tests.
To properly report status, testers should review and conduct statistical analysis on the test results and
discovered defects. The lessons learned from the test effort should be used to improve the next
iteration of the test process.

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

1 Metrics of Testing

Using quantitative measures and metrics
to manage the planning, execution, and
reporting of software testing.

2 Test Status Reports

Code Coverage—Monitoring the
execution of software and reporting on
the degree of coverage at the statement,
branch, or path level.

Requirement Coverage—Monitoring and
reporting the number of requirements
tested, and whether they are correctly
implemented.

Test Status Metrics—Understanding the
following metrics:

a. Metrics Used to Test—Includes metrics
such as defect removal efficiency,
defect density, and mean time to last
failure.

b. Complexity Measurements—
Quantitative values, accumulated by
a predetermined method, that
measure the complexity of a software
product.

(continues)

144 Chapter 5

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

c. Project Metrics—The status of a
project, including milestones, budget
and schedule variance, and scope
changes.

d. Size Measurements—Methods
primarily developed for measuring
the software size of information
systems, such as lines of code and
function points.

e. Defect Metrics—Values associated with
the number or types of defects,
usually related to system size, such as
“defects/1000 lines of code” or
“defects/100 function points.”

f. Product Measures—Measures of a
product’s attributes, such as
performance, reliability, and usability.

3 Final Test Reports

Reporting Tools—Using word processing,
database, defect tracking, and graphic
tools to prepare test reports.

Test Report Standards—Defining the
components that should be included in
a test report.

Statistical Analysis—Demonstrating the
ability to draw statistically valid
conclusions from quantitative test results.

Knowledge Category 7: User Acceptance Testing The objective of software development is to
meet the true needs of the user, not just the system specifications. Testers should work with the users
early in a project to clearly define the criteria that would make the software acceptable in meeting
the user needs. As much as possible, once the acceptance criteria have been established, they should
integrate it into all aspects of development.

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

1 Concepts of Acceptance Testing

Understanding the difference between
system test and acceptance test.

Building Software Tester Competency

145

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

2 Acceptance Test Planning Process

Defining the acceptance criteria.

Developing an acceptance test plan for
execution by user personnel.

Testing data using use cases.

3 Acceptance Test Execution

Executing the acceptance test plan.

Developing an acceptance decision
based on the results of acceptance
testing.

Signing off on successful completion of
the acceptance test plan.

Knowledge Category 8: Testing Software Developed by Outside Organizations Many
organizations do not have the resources to develop the type and/or volume of software needed to
effectively manage their business. The solution is to obtain or contract for software developed by
another organization. Software can be acquired by purchasing commerical off-the-shelf software
(COTS) or contracting for all or parts of the software development to be done by outside
organizations.

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

1 Understanding the difference between
testing software developed in-house and
software developed by outside
organizations.

2 Understanding the election process for
selecting COTS software.

3 Verifying that testers are able to

a. Ensure that requirements are testable.
b. Review the adequacy of the test plan
to be performed by the outsourcing

organization.

c. Oversee acceptance testing.

(continues)

146 Chapter 5

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

d. Issue a report on the adequacy of the
software to meet the contractual
specifications.

e. Ensure compatibility of software
standards, communications, change
control, and so on between the two
organizations.

4 Using the same approach as used for
in-house software, but may need to be
modified based on documentation
available from the developer.

5 Understanding the following objectives:

a. Testing the changed portion of the
software

b. Performing regression testing

c. Comparing the documentation to
the actual execution of the software

d. Issuing a report regarding the status
of the new version of the software

Knowledge Category 9: Testing Software Controls and the Adequacy of Security
Procedures The software system of internal control includes the totality of the means developed
to ensure the integrity of the software system and the products created by the software. Controls are
employed to control the processing components of software, ensure that software processing is in
accordance with the organization’s policies and procedures, and according to applicable laws and
regulations.

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

1 Principles and Concepts of a
Software System of Internal
Control and Security

Vocabulary of Internal Control and
Security—Understanding the vocabulary
of internal control and security, including
terms such as risk, threat, control,
exposure, vulnerability, and penetration.

Building Software Tester Competency 147

WORK PAPER 5-1 (continued)

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

Internal Control and Security Models—
Understanding internal control and
security models (specifically, the COSO
[Committee of Sponsoring
Organizations] model).

2 Testing the System of Internal
Controls

Perform Risk Analysis—Determining the
risk faced by the transactions/events
processed by the software.

Determining the controls for each of the
processing segments for transactions
processing, including

a. Transaction origination

b. Transaction entry

c. Transaction processing

d. Database control

e. Transaction results

Determining whether the identified
controls are adequate to reduce the risks
to an acceptable level.

3 Testing the Adequacy of Security
for a Software System

Evaluating the adequacy of
management’s security environment.

Determining the types of risks that
require security controls.

Identifing the most probable points
where the software could be penetrated.

Determining the controls at those points
of penetration.

Assessing whether those controls are
adequate to reduce the security risks to
an acceptable level.

(continues)

148 Chapter 5

WORK PAPER 5-1 (continued)

Knowledge Category 10: Testing New Techniques Testers require skills in their organization’s
current technology, as well as a general understanding of the new information technology that might
be acquired by their organization.

FULLY PARTIALLY NOT
COMPETENT | COMPETENT | COMPETENT

1 Understanding the Challenges of
New Technologies

New application architecture

New application business models

New communication methods

New testing tools

2 Evaluating New Technologies to Fit
into the Organization’s Policies
and Procedures

Assessing the adequacy of the controls
within the technology and the changes
to existing policies and procedures that
will be needed before the new
technology can be implemented
effectively. This would include:

Testing new technology to evaluate
actual performance versus supplier’s
stated performance.

Determining whether current policies and
procedures are adequate to control the
operation of the new technology and
modify to bring in currency.

Assessing the need to acquire new staff
skills to effectively implement the new
technology

Building Software Tester Competency 149

WORK PAPER 5-2 Evaluating Individual Competency

KNOWLEDGE NUMBER FULLY PARTIALLY NOT

CATEGORY OF SKILLS | COMPETENT | COMPETENT | COMPETENT
1 Software Testing Principles

and Concepts 8

2 Building the Test
Environment 12

3 Managing the Test Project | 16

4 Test Planning 27

5 Executing the Test Plan 19

6 Test Status, Analysis and
Reporting 8

7 User Acceptance Testing 5

8 Testing Software
Developed by Outside
Organizations 6

9 Testing Software Controls
and the Adequacy of
Security Procedures 11

10 Testing New Technologies | 8

Total 120

Multiply Total By 3 2 1

Multiplied Total

Total the Sum in Each of
the Three Columns

Divide by 120

Software Testing
Competency Score

150 Chapter 5

WORK PAPER 5-3 Building Test Team Competency

SOFTWARE TEST TEAM MEMBER

CATEGORY A B C D

1 Software Testing Principles
and Concepts

2 Building the Test
Environment

3 Managing the Test Project

4 Test Planning

5 Executing the Test Plan

6 Test Status, Analysis and
Reporting

7 User Acceptance Testing

8 Testing Software
Developed by Outside
Organizations

9 Testing Software Controls
and the Adequacy of
Security Procedures

10 Testing New Technologies

7. NV

Three

The Seven-Step
Testing Process

Overview of the
Software Testing Process

Chapters 2 through 5 explained how to establish a test environment. Now you're
ready to:

Understand the advantages of following a process
Understand the costs associated with testing

Introduce the seven-step process that will take you through organizing, plan-
ning, testing, and completing your testing project

Customize the seven-step process to the needs of your organization

Establish a process to manage the seven-step testing process

The process for software testing described in this chapter is based on the experience
of more than 1,000 organizations affiliated with the Quality Assurance Institute.

Advantages of Following a Process

There is no best process for testing software. However, the seven-step process described
in this chapter incorporates the best aspects of many different processes. Understanding
and using a process for testing software provides the following advantages:

Testing is consistent. With a process, testing can be performed in a consistent
manner from test to test. The use of the process will reduce variability of testing
and improve confidence in the test process.

153

154 Chapter 6

Testing can be taught. When testing is performed by a process, the process is
teachable. When testing is performed as an art or craft, one must study under a
master tester to learn how to test. The test process breaks testing into steps and
tasks that are easy to teach.

Test processes can be improved. By using processes, one learns advantages
and disadvantages of the process. Disadvantages can be identified and the
process changed to continually improve testing.

Test processes are manageable. With processes, the test manager can manage
the process. Without the test process, the test manager must manage people.
From a control perspective, it's much easier to manage or control a process than
an individual.

The Cost of Computer Testing

There are two general categories of testing: pre-implementation and post-
implementation testing. The first encompasses those activities that occur prior to placing
the application system in an operational status. The objective of pre-implementation
testing is to determine that the system functions as specified and that defects in the sys-
tem are removed prior to placing the system into production. The second type of
testing occurs after the system goes into operation and is normally considered part of
systems maintenance.

The cost of removing system defects prior to the system going into production
includes:

Building the defect into the system
Identifying the defect’s existence
Correcting the defect

Testing to determine that the defect has been removed

Defects uncovered after the system goes into operation generate the following costs:

Specifying and coding the defect into the system
Detecting the problem within the application system
Reporting the problem to the project manager and/or user
Correcting the problems caused by the defect

Operating the system until the defect is corrected
Correcting the defect

Testing to determine that the defect no longer exists

m [ntegrating the corrected program(s) into production

Testing should include the cost to test plus the cost of undetected defects. Few organi-
zations consolidate all the named costs as testing costs; therefore, an organization rarely
knows the true cost of testing. Testing is normally considered to be that process used to

Overview of the Software Testing Process

155

find defects and ensure that the system functions properly. However, as illustrated, the
cost of building and correcting defects may far exceed the cost of detecting those defects.
The National Institute of Standards and Technology has estimated that testing, includ-
ing the correction of defects prior to the application going into production, accounts for
at least half of the total system development effort.
The high cost of system defects poses the following two challenges to organizations:
how to quantify the true cost of removing defects, and how to reduce the cost of testing.

Quantifying the Cost of Removing Defects

Quality Assurance Institute surveys indicate that there are in the range of 20 to 60
defects in many application systems per 1,000 source statements. These surveys indi-
cate that approximately two-thirds of the defects per 1,000 lines of source code occur in
the requirements and design phases of application systems. Thus, while the defects are
normally caught in the test phase of the system development life cycle, they occur
early in the development process. (Note that as development processes mature, the
number of defects produced is reduced.)
The causes of the defects built into application systems include:

= Improperly interpreted requirements. IT personnel misinterpret what the user
wants, but correctly implement what the IT people believe is wanted.

m Users specify wrong requirements. The specifications given to IT personnel
are erroneous.

m Requirements are incorrectly recorded. IT personnel fail to record the specifi-
cations properly.

m Design specifications incorrect. The application system design does not
achieve the system requirements, but the design as specified may be correctly
implemented.

m Program specifications incorrect. The design specifications are incorrectly
interpreted, making the program specifications inaccurate, but the program
can be properly coded to achieve the correct program specifications.

m Program coding error. The program is not coded according to the program
specifications.

m Program structural or instruction error. The programming capabilities are
improperly utilized, resulting in defects attributable to misuse of a program
instruction or the method in which the instruction is used.

m Data entry error. The system and/or program information is incorrectly
entered into the computer.

m Testing error. The test either detects an error where there is no error or fails to
detect an existing error in the application system.

= Error correction mistake. In the process of correcting an error, the corrected
condition contains a defect.

m Corrected condition causes another defect. In the process of correcting a
defect, a defect occurs in the unchanged portion of the software.

156

Chapter 6

The areas associated with the test process can usually be readily identified. It is the
estimation of the costs associated with these areas that is difficult to obtain. However,
until the total cost of testing is known, the cost of uncovering and correcting defects
will be unknown.

There are two methods for developing a more realistic estimate of testing. The first
is to ask IT personnel to identify all the preceding conditions and allocate their time
and effort accordingly. Although this concept works in theory, in practice it is difficult
to record the time and effort associated with incurring defects until that defect is actu-
ally known. Because the point of uncovering defects may be many weeks or months
after the actual day they were built into the system, it may be difficult to go back and
recover these costs.

The second, and more practical, approach is to record the number of defects encoun-
tered as a result of testing. As each defect is uncovered, it should be noted, as well as
the point in the system development life cycle process where it was uncovered.

The actual cost to redesign and correct the system should then be recorded. These
are the costs required for correcting the programs by some recompilation and change
of documentation. The costs are then multiplied by a factor that represents the totality
of the error and problems associated with the defect as follows:

m Defects corrected during design requirements phase. The cost to correct will
be the total cost associated with the correction of the defect.

m Defects corrected during building the software. The cost to correct require-
ment defects should be multiplied by a factor of 10 because the additional costs
are associated with removing the defective components of the software.

m Defects corrected after the system goes into production. The cost to correct
will be approximately 100 times the cost to correct the same defect prior to
placing the software into production.

Reducing the Cost of Testing

The economics of computer testing clearly demonstrate that the method to reduce the
cost of defects is to locate those defects as early in the system development life cycle as
possible. This involves beginning testing during the requirements phase of the life
cycle and continuing testing throughout the life cycle. The objective of testing would
then become to detect the error as early in the life cycle as possible.

The Seven-Step Software Testing Process

The seven-step software testing process follows the “V” concept of testing (see Figure
6-1). The V represents both the software development process and the seven-step soft-
ware testing process. Both processes commence at the same time and proceed concur-
rently through the end of the project. Note that step 7, post-implementation analysis,
will occur for both the development process and the test process. The purpose of this
analysis is to determine whether development and/or testing can be performed more
effectively in the future.

Overview of the Software Testing Process 157

Development Independent
of Software Test of Software
. Step 1
Re Ei(:grr:\eents Organizing for Testing
q Chapter 7

N o

Developing the Test Plan
Chapter 8

/

\ Step 3
Verification Testing

Build Chapter 9

Software /

Step 4
Validation Testing
Chapter 10

Install /

Soft
oftware Step 5

Analyzing and Reporting Test Results
\ Chapter 11

Operate and
Maintain Software

Design
Software

Step 6
Acceptance and Operational Testing

\ Chapter 12

Step 7
Post-Implementation Analysis
Chapter 13

Figure 6-1 The seven-step software testing process.

Abrief overview of the seven-step software testing process follows:

1. Organizing for testing
a. Define test scope. Determine which type of testing is to be performed.

b. Organize the test team. Determine, based on the type of testing to be per-
formed, who should be assigned to the test team.

c. Assess development plan and status. This is a prerequisite to building the
test plan that will be used to evaluate the software implementation plan.
During this step, testers will challenge the completeness and correctness of
the development plan. Based on the extensiveness and completeness of the
project plan, the testers will be in a position to estimate the amount of
resources they will need to test the implemented software solution.

2. Developing the test plan

a. Perform risk analysis. Identify the test risks.

158 Chapter 6

b. Write the test plan. Forming the plan for testing will follow the same pat-
tern as any software planning process. The structure of all plans should be
the same, but the content will vary based on the degree of risk the testers
perceive as associated with the software being developed.

3. Verification testing

a. Test software requirements. Incomplete, inaccurate, or inconsistent
requirements lead to most software failures. The inability to get the right
requirements during the requirements phase will increase the cost of imple-
mentation significantly. Testers, through verification, must determine that
the requirements are accurate and complete and that they do not conflict
with one another.

b. Test software design. This step tests both external and internal design
through the verification techniques. The testers are concerned that the
design will in fact achieve the objectives of the project as well as being
effective and efficient on the designated hardware.

c. Test software construction. The method chosen to build the software from
the internal design document will determine the type and extensiveness of
tests needed. As the construction becomes more automated, less testing will
be required during this phase. However, if software is constructed by a
manual coding process, it is subject to error and should be verified. Experi-
ence has shown that it is significantly cheaper to identify defects during the
construction phase than through dynamic testing during the validation test-
ing step.

4. Validation testing

a. Perform validation testing. This involves the testing of code in a dynamic
state. The approach, methods, and tools specified in the test plan will be
used to validate that the executable codes meets the stated software require-
ments and the structural specifications of the design.

b. Record test results. Document the results achieved through testing.
5. Analyzing and reporting test results

a. Analyze the test results. Examine the results of testing to determine where

action is required because of variance between “what is” and “what
should be.”

b. Develop test reports. Test reporting is a continuous process. It may be both
oral and written. It is important that defects and concerns be reported to the

appropriate parties as early as possible so that the can be corrected at the
lowest possible cost.

6. Acceptance and operational testing

a. Perform acceptance testing. Acceptance testing enables users of the software
to evaluate the applicability and usability of the software in performing
their day-to-day job functions. This tests what the user believes the software
should perform, as opposed to what the documented requirements state the
software should perform.

Overview of the Software Testing Process 159

b. Test software installation. Once the test team has confirmed that the soft-
ware is ready for production, the ability to execute that software in a pro-
duction environment should be tested. This tests the interface to operating
software, related software, and operating procedures.

c. Test software changes. While this is shown as step 6 in the context of per-
forming maintenance after the software is implemented, the concept is also
applicable to changes throughout the implementation process. Whenever
requirements change, the test plan must change, and the impact of that
change on software systems must be tested and evaluated.

7. Post-implementation analysis. Test improvements can best be achieved by
evaluating the effectiveness of testing at the end of each software test assign-
ment. Although this assessment is primarily performed by the testers, it should
involve the developers, users of the software, and quality assurance profession-
als if the function exists in the IT organization.

Objectives of the Seven-Step Process

The following are the objectives of the seven-step testing process:

1. Organizing for testing. This step has two objectives. The first objective is to
define what is to be tested. This is the scope of testing. It is not the objectives
for a specific application, but the scope of the testing that will be performed to
determine whether the application objectives have been met. Scope includes
such things as the test to determine whether or not user needs have been met.
Do you perform both static and dynamic testing? Do you test security? Do you
test internal control? Second, you need to determine who will perform the test.
This involves establishing the test team and determining what the individuals
on that team will test.

2. Developing the test plan. The plan will determine how testing will be per-
formed. During planning, the specific objectives for testing will be determined.
For example, in the payroll system, a test objective might be to test the calcula-
tion of the payroll taxes. Both the specific project objectives and the scope
objectives will be used to develop the detailed test plan.

3. Verification testing. The objective of verification testing is primarily to ensure
that you are building the right system. You will also perform tracing to ensure
that no requirements are lost as you move between developmental phases, but
the main objective is verifying that you have built the right system. During ver-
ification testing, you will challenge the requirements and design of the system.
The objective is to remove defects as close to the point they occur as possible.

4. Validation testing. The objective of validation testing is to determine whether
you built the system right. In other words, does the system perform as
expected? During validation testing, you will create test data and scripts and
run those in a dynamic mode against the software to validate that, in fact, the
output is the expected output.

160 Chapter 6

5. Analyzing and reporting test results. The objective of this step is to determine
what you have learned from testing and then inform the appropriate individu-
als. This would include what works, what doesn’t work, as well as any sugges-
tions that the testers might make. It would also include analyzing whether such
things as internal controls and security are adequate.

6. Acceptance and operational testing. The objective of this type of testing is to
determine if you can use the system now, and that as the system is changed
over time, it is still effective and efficient. Acceptance testing might be per-
formed immediately prior to the software going into production, or it may be
performed whenever changes are made to the system. The step also addresses
controlling changes to the software application.

7. Post-implementation analysis. The objective of this step is future-oriented. It
attempts to determine whether testing was performed effectively, and if not,
what changes could be made to the testing process so that future testing will be
more effective and efficient. Note that this can be done individually on a single
system or on multiple systems simultaneously. This step can be performed by
testers or by another group, such as quality assurance personnel.

Customizing the Seven-Step Process

The seven-step process defined in this chapter is a generic process. It is designed to test
the most complex software testing system. It is designed to be used by both develop-
ers and an independent test team. If the seven-step process is to be effective, it must be
customized for the organization using that process.

In order to get buy-in from those responsible for testing, they should be involved in
the customization process. It is recommended that a small team of well-respected testers
be organized for the purpose of customizing the process.

To customize the process, the following steps must be undertaken:

1. Understand the seven-step process. This involves reading Part Three of this
book and perhaps discussing the process among the group.

2. Customize for “who” tests. Testing can be performed by both developers and
testers. In some organizations, those who develop the software also test the
software. In other organizations, those who test may be independent of the
development team. As the test process is reviewed, it will become obvious that
some of the steps are designed for independent testers and will not be needed
for developers if they perform their own testing. For example, independent
testers may want to know that the project has allocated adequate time for test-
ing. Since it is the estimate of the developers, if the developers tested they would
not have to do that step.

3. Customize for the size and type of system to be tested. The seven-step process
is designed to enable you to test any software system and many different types
of systems. For some systems, those which may pose no risk to the organiza-
tion, it is not necessary to perform risk analysis as a prerequisite to testing. For
small systems, the scope of the test plan might be reduced, for example, elimi-
nating sections such as when to stop testing.

Overview of the Software Testing Process

161

4. Customize for “what” to test. The seven step process is a generic testing process.
It does not address such things as the platform to be tested, the type of devel-
opmental process, or specific testing needs, such as testing internal controls.
Part Four of this book includes many different types of testing that may need to
be incorporated into the seven-step testing process. The customization team
should become familiar with the materials in Part Four of this book plus any
specific testing needs they may have for their organization. These needs should
be incorporated into the testing process if appropriate.

5. Customize for in-house developed and/or contracted software. The generic
seven-step testing process is designed to be used with both in-house developed
and contracted or purchased software. However, depending on whether the
software is developed in-house or contracted, the steps in the process may need
to be modified. For example, in contracted software, the testers may not have
access to source code. Thus, they will be limited to black box testing and pre-
cluded from white box testing.

6. Customize for vocabulary. It is important that the testing process use the
vocabulary of the organization. For example, if your organization does not use
the terms verification and validation, you will want to change those phrases to
vocabulary suitable to your organization. For example, your organization may
refer to verification testing as static testing and validation testing as dynamic
testing.

7. Integrate testing into the development process. Development and testing
should not be completely independent processes. It is important that develop-
ment and testing be integrated into a process that will produce quality software.
If static testing is to be performed, for example, conducting a requirement review,
that should be incorporated into the overall process of building software. If not,
the developers may not allot adequate time for their participation in that aspect
of testing.

Customization is a very important component of getting the software testing process
implemented, accepted, and used by testers. It is important that they be involved in cus-
tomizing this process for their organization. Even if you decide to use the seven-step
process as is, your decision should involve the users of the process.

Managing the Seven-Step Process

The test manager uses the seven-step process to manage the entire testing process. The
test manager should also manage by process, by facts, and by results.

m Manage by process. The test manager uses the test process to manage day-to-
day testing activities. In preparing for testing, the test manager selects the test
team and defines the specific test objectives for the software system being
tested. The test process will then enable testers to accomplish those objectives.

The test plan provides the detailed budget, schedule, and tasks to be accom-
plished during testing. The test plan, combined with the test objectives, is in
fact a contract with the stakeholders of the tested system. It is what the testers
agreed to do in performing testing. The test manager needs to manage that

162 Chapter 6

plan as though it were a contract and ensure that all aspects of the plan are
accomplished.

Manage by facts. The test manager needs to develop metrics in order to moni-
tor quantitatively some key aspects of testing. This is considered the dashboard
for test management. The test manager should select between three and eight
key metrics to help manage testing. These metrics might include:

m Budget
m Schedule
m Requirements tested /not tested

= Status of testing, including such things as requirements tested that were
implemented incorrectly

m Requirements tested and not corrected as of a certain time period (for exam-
ple, 10 days)

m Status of defects

Manage by results. The process of testing is performed in order to accomplish
specific objectives. For many organizations, the objectives will be the criteria
for software acceptance—for example, the following customer needs:

m Transactions can be processed by someone with X skills.
m Ninety-six percent of all input transactions are acceptable for processing.

m Changes to a product’s price can be made within 24 hours.

The test manager should create a quantitative dashboard of key indicators that will
enable him or her to accomplish the test objectives. The types of key indicators the test
manager may want on the dashboard include

Leaving customers satisfied with the testing process (customers may be devel-
opers, users, and/or management)

Meeting testing objectives
Completing the test plan’s contractual components

Accomplishing special test needs, such as validating the adequacy of system
security

Using the Tester's Workbench
with the Seven-Step Process

Chapter 3 introduced the tester’s workbench, which forms the template describing the
procedures your test team will perform within the seven testing steps. Chapters 7
through 13 use the following workbench:

Overview. A brief description of the step. This will expand on the overview
given earlier in this chapter for each step.

Objective. A detailed description of the purpose of the step that you can use to
measure your progress at each step.

Overview of the Software Testing Process 163

Concerns. Specific challenges that testers will have to overcome to complete
the step effectively.

Workbench. A description of the process that the testers should follow to com-
plete the step.

Input. The documents, information, and skills needed to complete the step.

Do procedures. Detailed, task-by-task procedures that testers must follow to
perform the step.

Check procedures. A checklist that testers use to verify that they have per-
formed a step correctly. These procedures will be related to the test’s objective.

Output. The deliverables that the testers must produce at the conclusion of
each step.

Guidelines. Suggestions for performing each step more effectively and for
avoiding problems.

Workbench Skills

Manufacturing positions frequently are designed so that workers require minimal
skills to perform their tasks effectively. Job descriptions for these positions are accom-
panied by detailed documentation so that any worker could perform that function cor-
rectly. Professional positions, however, require more advanced skills and are usually
accompanied by far inferior documentation. (It's assumed that the person coming into
the position will bring in a certain level of knowledge.)

A surgeon, for example, has to undergo 12 years of training before becoming
licensed. Although there are detailed do and check procedures for performing a given
operation, much of the execution depends on the doctor’s skills. The same is true when
the systems analyst defines end-user requirements. The systems analyst is guided by
work papers, but much of the innovative work needed to properly define requirements
depends on his or her years of experience and skill level.

Figure 6-2 illustrates the relationship between the tester’s competency and the
tester’s workbench. The workbench assumes an average skill level on the part of the
reader, incorporating these assumptions into its descriptions of procedures and tools.
The skills that a professional tester should possess are defined in the common body of
knowledge (CBOK) for a software testing professional. Developed by the Software
Certification Organization Certification Board, the CBOK is the basis used for evaluat-
ing the competency of testers.

If the people involved in the tester’s workbenches do not possess the basic testing
skills in the CBOK, one or more of the following recommendations should be pursued
to improve testing skills:

m Attend a basic course on software testing

m Take the necessary courses from the Quality Assurance Institute to prepare for

the Certified Software Tester Examination

164 Chapter 6

High Personal Testing Skills

Low | Process Maturity

Completing Test Test Planning/
Time Reporting Execution Analysis

Figure 6-2 Workbench competency continuum.

Summary

This chapter presented the proposed seven-step testing process. The chapter also intro-
duced issues surrounding the costs associated with testing. This will be helpful for jus-
tifying testing and attempting to test in a cost-effective manner. The chapter presented
six areas for customizing the seven-step process to make it more effective in your orga-
nization. The chapter also addressed how test managers should manage the seven-step
process.

Chapters 7 through 13 describe each of the seven steps, respectively. Each chapter
includes all the necessary templates and checklists to perform those steps. It is impor-
tant when reading a chapter to recognize the objective is to provide the templates,
checklists, and tasks needed to perform those steps. This differs from many testing
books, which focus on what to do; these seven steps focus on how to perform software
testing.

Step 1: Organizing
for Testing

Software development involves two concurrent processes: building the software and
testing it. It does not matter whether testing is performed by developers or by an inde-
pendent test team; what is important is that someone has responsibility for testing.
This chapter defines the tasks to prepare for testing and to organize the test team.

If the developers do the testing, it is probably not necessary for the testers to ensure
the project estimate is adequate and to develop a process to track the project’s status.
However, when independent testers perform the testing, unless they can control their
own test budget and the project team has an effective project status reporting process,
the testers should perform the last task.

Objective

Testing can fall short of expectations for two reasons. First, the necessary preparation
may not be accomplished. This chapter and the next discuss the needed preparatory
work prior to executing tests. Second, many testing tasks are never completed because
inadequate resources are allocated.

The objective of this chapter is to enable you to define the scope of testing and
ensure that adequate time and resources are available for testing. If testing is included
within the developer’s budget, the test manager needs to ensure that the estimate is
adequate for testing. The test manager must also ensure that overruns in project devel-
opment will not restrict the amount of testing as defined in the test plan.

165

166 Chapter 7

Workbench

Figure 7-1 shows the workbench for organizing for testing. The workbench input is the
current documentation for the software system being tested. Five tasks are listed, but
some of the tasks may have been completed prior to starting the first task. The output
from this step is an organized test team, ready to begin testing.

DO | CHECK

REWORK

Task 1

Appoint the
Test Manager

!

Task 2

Define the
Scope of
Testing

!

Task 3

Tasks
Performed
Correctly

Test Team

Project
Documentation

Appoint the
Test Team

!

Task 4
Verify the
Development
Documentation

!

Task 5
Validate the Test
Estimate and
Status Reporting
Process

L

Software
Development
Process

Figure 7-1 Workbench for organizing testing.

Step 1: Organizing for Testing 167

Input

The following two inputs are required to complete this step:

m Project documentation. This includes the project plan, objectives, scope, and
defined outputs.

m Software development process. This includes the procedures and standards to
be followed during the project’s implementation.

Do Procedures

The following five tasks are recommended for organizing the testing process:

1. Appoint the test manager. If testing is part of the in-house development effort,
the project leader should determine who is responsible for testing. If testing is
performed by independent testers, IT management should appoint the test
manager.

2. Define the scope of testing. The test manager defines the scope of testing,
although all or part of the scope may be defined by testing standards.

3. Appoint the test team. The test manager, project manager, or IT management
should appoint the test team.

4. Verify the development documentation. The test manager should verify that
adequate development documentation is available to perform effective testing.

5. Validate the test estimate and project status process. The test estimate can be
developed by either the test manager or the project manager.

Task 1: Appoint the Test Manager

Regardless of whether testing is performed by in-house developers or independent
testers, someone needs to be responsible for testing. The test manager has the follow-
ing responsibilities:

Define the scope of testing

Appoint the test team

Define the testing process and the deliverables produced

Write/oversee the test plan

Analyze test results and write the test report(s)

If the test manager cannot fulfill these responsibilities alone, other individuals

should be assigned to the test team to assist him or her. Responsibilities may change
based on the size of the project.

Chapter 7

The skills required to be a test manager vary by the size of the project. For small pro-
jects (1-2 testers), the more experienced tester can fulfill the manager role; for medium-
sized projects (3-5 testers), the test manager must be both a tester and a manager; and
for larger projects (6 or more testers), managerial skills are more important than test
skills.

Task 2: Define the Scope of Testing

Chapters 1-3 discussed the options available for testing scope. Traditionally, software
testing validated that the specifications were implemented as specified. Previous dis-
cussions on testing scope expand that definition to include determining whether user
needs are met, identifying whether the project was implemented in the most effective
and efficient manner, ensuring the software system has met the desired quality factors,
and testing for specialized software attributes, such as the adequacy of the system of
internal control, and so forth.

The scope of testing may be defined in the test mission. In other words, if the testers
are to ensure that the system meets the user’s needs, the test manager would not have
to define that in the test scope. Likewise, if testers are to assist users in developing and
implementing an acceptance test plan, it would not have to be defined in the scope of
testing for a specific project.

If the test mission is not specific about testing scope and/or there are specific objec-
tives to be accomplished from testing, the test manager should define that scope. It is
important to understand the scope of testing prior to developing the test plan.

Task 3: Appoint the Test Team

The test team is an integral part of the testing process. Without the formalization of the
test team, it is difficult to introduce a formalized testing concept into the development
process. Extensive “desk checking” by the individual who developed the work is not a
cost-effective testing method. The disadvantages of a person checking his or her own
work include the following:

m Misunderstandings will not be detected, because the checker will assume what
he or she was told is correct.

m Improper use of the development process may not be detected, because the
individual may not understand the process.

m The individual may be “blinded” into accepting erroneous test results because
he or she falls into the same trap during testing that led to the introduction of
the defect in the first place.

m The IT staff is optimistic in their ability to do defect-free work and thus some-
times underestimate the need for extensive testing.

m Without a formal division between software development and software testing,
an individual may be tempted to improve the system structure and documen-
tation rather than allocate that time and effort to the testing process.

This section describes the four approaches to appointing a test team (see Figure 7-2).

Step 1: Organizing for Testing 169

COMPOSITION

TEST TEAM OF TEST TEAM

APPROACH MEMBERS ADVANTAGES DISADVANTAGES

Internal Project team « Minimize cost * Time allocation
« Training * Lack of independence
 Knowledge of * Lack of objectivity

project
External Quality assurance * Independent view « Cost

Overreliance

Professional testers « IT professionals

* Multiple project » Competition
testing experience

Non-IT Users * Independent view « Cost
Auditors * Independence in * Lack of IT knowledge
assessment .
Consultants * Lack of project
* Ability to act knowledge
Combination Any or all of the * Multiple skills * Cost
above . . .
¢ Education * Scheduling reviews

* Clout Diverse backgrounds

Figure 7-2 Test team composition.

Internal Team Approach

In the internal test team approach, the members of the project team become the mem-
bers of the test team. In most instances, the systems development project leader is the
test team project leader. It is not necessary to have all the development team members
participate on the test team, although there is no reason why they cannot. What is
important is that one member of the test team will be primarily responsible for testing
other members” work. The objective of the team is to establish a test process that is inde-
pendent of the people who developed the particular part of the project being tested.
The advantage of the internal IT test team approach is that it minimizes the cost of
the test team. The project team is already responsible for testing, so using project mem-
bers on the test team is merely an alternate method for conducting the tests. Testing
using the test team approach not only trains the project people in good testing meth-
ods, it cross-trains them in other aspects of the project. The internal IT test team
approach uses those people in testing who are most knowledgeable about the project.
A potential disadvantage of the internal test team approach is that the team will not
allocate appropriate time for testing. In addition, the project team members may lack
independence and objectivity in conducting the test. The tendency is for the project

170

Chapter 7

team members to believe that the project solution is correct and thus find it difficult to
challenge the project assumptions.

External Team Approach

Testing by an external team does not relieve the project personnel of responsibility for
the correctness of the application system. The external team approach provides extra
assurance of the correctness of processing. Typically, external testing occurs after the
project team has performed the testing it deems necessary. The development team ver-
ifies that the system structure is correct, and the independent test team verifies that the
system satisfies user requirements.

External testing is normally performed by either quality assurance personnel or a
professional testing group in the IT department. While the project team is involved in all
aspects of the development, the quality assurance test teams specialize in the testing
process (although most individuals in these testing groups have experience in systems
design and programming).

The advantage of external testers is the independent perspective they bring to the
testing process. The group comprises IT professionals who have specialized in the area
of testing. In addition, these groups have testing experience in multiple projects and,
thus, are better able to construct and execute tests than those individuals who test only
periodically.

The disadvantage of external IT testing is the additional cost required to establish
and administer the testing function. Also, the development team may place too much
reliance on the test team and thus fail to perform adequate testing themselves. In addi-
tion, the competition between the test team and the project team may result in a break-
down of cooperation, making it difficult for the test team to function properly.

Non-IT Team Approach

Testing also can be performed by groups external to the IT department. The three most
common groups are users, auditors, and consultants. These groups represent the organi-
zational needs and test on behalf of the organization. The advantage of a non-IT test team
is that they provide an independent assessment. The non-IT group is not restricted by
loyalty to report unfavorable results only to the IT department. The non-IT group has a
greater capacity to cause action to occur once problems are detected than a group within
an IT department.

The disadvantage of non-IT testing is its cost. Generally, these groups are not famil-
iar with the application and must first learn the application, and then learn how to test
within the organization.

Combination Team Approach

In the combination test team approach, any or all the preceding groups can participate
on a test team. The combination team can be assembled to meet specific testing needs.
For example, if the project has significant financial implications, an auditor could be
added to the test team; if the project has communication concerns, a communications
consultant could be added.

Step 1: Organizing for Testing

171

The advantage of drawing on multiple skills for the test team is to enable a multi-
disciplined approach to testing. In other words, the skills and backgrounds of individ-
uals from different disciplines can be drawn into the test process. For some of the test
participants, particularly users, it can be helpful to make them aware of both the system
and the potential pitfalls in an automated system. In addition, a combination test team
has greater clout in approving, disapproving, or modifying the application system.

The disadvantage of the combination test team is the cost associated with assembling
and administering the test team. It also may pose some scheduling problems determin-
ing when the tests will occur. Finally, the diverse backgrounds of the test team may
make the determination of a mutually acceptable test approach difficult.

Task 4: Verify the Development Documentation

Testers rely on the development documentation to prepare tests and to determine the
desired results. If the development documentation is vague, testers cannot determine
the expected results. For example, an expectation that the system should be “easy to
use” is not specific enough to test. It is not good practice for the tester to define the
expected result or to indicate results are “adequate.”

It is important prior to test planning to determine the completeness and correctness
of development documentation. In organizations where good development documen-
tation standards exist, and IT management enforces compliance to those standards,
this task is not necessary. However in that case it is necessary for the testers to have a
thorough understanding of the development documentation standards.

Testers should be concerned that the documentation process will fail to

m Assist in planning and managing resources

m Help to plan and implement testing procedures

m Help to transfer knowledge of software development throughout the life cycle
-

Promote common understanding and expectations about the system within the
organization and—if the software is purchased—between the buyer and seller

Define what is expected and verify that is what is delivered

m Provide managers with technical documents to review at the significant devel-
opment milestones, to determine that requirements have been met and that
resources should continue to be expended

Development Phases

Programs and systems are developed in phases, from the initial idea for a system to a
properly working system. The terminology used to identify 170these inputs, phases,
and the stages within these phases is defined in the following list:

m Initiation. The objectives and general definition of the software requirements
are established during the initiation phase. Feasibility studies, cost/benefit
analyses, and the documentation prepared in this phase are determined by the
organization’s procedures and practices.

172 Chapter 7

m Development. During the development phase, the requirements for the soft-
ware are determined and then the software is defined, specified, programmed,
and tested. The following documentation is prepared during the four stages of
this phase:

m Definition. During the definition stage, the requirements for the software
and documentation are determined. The functional requirements document
and the data requirements document should be prepared.

m Design. During this stage, the design alternatives, specific requirements,
and functions to be performed are analyzed and a design is specified. Docu-
ments that may be prepared include the system/subsystem specification,
program specification, database specification, and test plan.

m Programming. During the programming stage, the software is coded and
debugged. Documents that should be prepared during this stage include
the user manual, operations manual, program maintenance manual, and
test plan.

m Testing. During the test stage, the software and related documentation are
evaluated and the test analysis report is prepared.

m Operation. During the operation phase, the software is maintained, evaluated,
and changed as additional requirements are identified.

The 14 documents needed for system development, maintenance, and operations
are listed in Figure 7-3 and described in the following list:

m Project request. The purpose of the project request document is to provide a
means for users to request the development, purchase, or modification of soft-
ware or other IT-related services. It serves as the initiating document in the soft-
ware life cycle and provides a basis for communication with the requesting
organization to further analyze system requirements and assess the possible
effects of the system.

m Feasibility study. Feasibility studies help analyze system objectives, require-
ments, and concepts; evaluate alternative approaches for achieving objectives;
and identify proposed approaches. The feasibility study document, in conjunc-
tion with a cost/benefit analysis, should help management make decisions to
initiate or continue an IT project or service. The study can be supplemented
with an appendix containing details of a cost/benefit analysis or considered
with a separate cost/benefit analysis document.

m Cost/benefit analysis. Such analyses can help managers, users, designers, and
auditors evaluate alternative approaches. The analysis document, in conjunc-
tion with the feasibility study document, should help management decide to
initiate or continue an IT project or service.

m Software summary. This document is used for very small projects to substitute
for other development-phase documentation when only a minimal level of
documentation is needed.

Step 1: Organizing for Testing

173

INITIATION
PHASE

Definition
Stage

DEVELOPMENT PHASE

Design
Stage

Programming

Stage

OPERATION
PHASE

Test
Stage

SOFTWARE SUMMARY

Project
Request

Document

Feasibility
Study
Document

Cost/Benefit
Analysis
Document

Functional
Requirements

Document

Data
Requirements
Document

System/ User

Subsystem Manual

Specification

Program Operations

Specification ~ Manual

Database Program

Specification ~ Maintenance
Manual

TEST PLAN

(Uses and
updates many

of the initiation
and
development
phase
documents.)

Test
Analysis
Report

Figure 7-3 Documentation within the software life cycle.

m Functional requirements. The purpose of the functional requirements docu-
ment is to provide a basis for users and designers to mutually develop an
initial definition of the software, including the requirements, operating envi-
ronment, and development plan.

m Data requirements. During the definition stage, the data requirements docu-
ment provides data descriptions and technical information about data collection
requirements.

m System/subsystem specifications. Designed for analysts and programmers,
this document specifies requirements, operating environment, design charac-
teristics, and program specifications.

m Program specification. The purpose of the program specification is to specify
program requirements, operating environment, and design characteristics.

m Database specifications. This document specifies the logical and physical char-
acteristics of a particular database.

174 Chapter 7

User manual. Written in non-technical terminology, this manual describes sys-
tem functions so that user organizations can determine their applicability and
when and how to use them. It should serve as a reference document for prepa-
ration of input data and parameters and for interpretation of results.

Operations manual. The purpose of this manual is to provide computer opera-
tion personnel with a description of the software and its required operational
environment.

Program maintenance manual. This manual provides the information necessary
to understand the programs, their operating environment, and their maintenance
procedures.

Test plan. This document provides detailed specifications, descriptions, and
procedures for all tests and test data reduction and evaluation criteria.

Test analysis report. The purpose of the test analysis report is to document test
results, present the proven capabilities and deficiencies for review, and provide a
basis for preparing a statement of software readiness for implementation.

The standards for preparing documentation, as developed by your IT organization,
are the second input to this test process.

Measuring Project Documentation Needs

The formality, extent, and level of detail of the documentation to be prepared depend
on the organization’s IT management practices and the project’s size, complexity, and
risk. What is adequate for one project may be inadequate for another.

Too much documentation can also be wasteful. An important part of testing docu-
mentation is to determine first that the right documentation is prepared; there is little
value in confirming that unneeded documentation is adequately prepared.

The testing methodology uses 12 criteria to establish the need for documentation:

Originality required. The uniqueness of the application within the organization.

Degree of generality. The amount of rigidity associated with the application
and the need to handle a variety of situations during processing.

Span of operation. The percentage of total corporate activities affected by the
system.

Change in scope and objective. The frequency of expected change in require-
ments during the life of the system.

Equipment complexity. The sophistication of the hardware and communica-
tions lines needed to support the application.

Personnel assigned. The number of people involved in developing and main-
taining the application system.

Developmental cost. The total dollars required to develop the application.
Criticality. The importance of the application system to the organization.

Average response time to program change. The average amount of time avail-
able to install a change to the application system.

Step 1: Organizing for Testing 175

m Average response time to data input. The average amount of time available to
process an application transaction.

m Programming language. The language used to develop the application.

m Concurrent software development. Other applications and support systems
that need to be developed concurrently to fulfill the total mission.

A five-point weighting system is used for each of the 12 criteria, as shown in Figure
7-4. For example, if two people have been assigned to the project, a weight of 1 is allo-
cated for criterion 6, but if seven people were assigned, a weight of 3 would be used.

Work Paper 7-1 should be used in developing the total weighted documentation
score, as follows:

1. Determine the weight for each of the 12 criteria. This is done by determining
which weights for each criterion are appropriate for the application being
tested. The descriptive information in the five weight columns should be the
basis of this determination.

2. Enter the weight number on Work Paper 7-1 for each of the 12 criteria. For
example, if under the originality criterion weight 5 is most applicable, enter
5 in the Weight column.

3. Total the weights for the 12 criteria. The minimum score is 12; the maximum
is 60.

The weighted score is used in determining what specific documents should be pre-
pared for the software system being tested.

Determining What Documents Must Be Produced

Figure 7-5 relates the total weighted criteria score in Work Paper 7-1 to the previously
described software documents and recommends which document testers should pre-
pare. The need for several of the documents depends on the situation. (For example,
database specifications and data requirement documents are usually required for sys-
tems using database technology.) A project request document is needed in organiza-
tions that require formal approvals before conducting a feasibility study. Cost/benefit
analysis documents are needed in organizations requiring that such analyses be per-
formed before a project is put into development.

With the total weighted criteria score developed, Figure 7-5 can be used as follows:

m The appropriate row for selecting documents is determined by cross-referencing
the score developed in Work Paper 7-1 to the score in the Total Weighted Crite-
ria column. Some of the scores in this column overlap to accommodate highly
critical projects, regardless of their scores.

m For the row selected, the columns indicate which documents are needed.
If the project did not generate these documents, the test team should question the

documentation. If unneeded documents were prepared, the test team should challenge
the need for maintaining them.

CRITERIA

Originality required

Degree of generality

Span of operation

Change in scope and
objective

Equipment complexity

Personnel assigned
Developmental cost (§)
Criticality

Average response time
to program change

Average response time
to data input

Programming languages

Concurrent software
development

None—reprogram on
different equipment

Highly restricted—
single purpose

Local or utility

None

Single machine—
routine processing

1to2
1K to 10K

Limited to data
processing

2 or more weeks
2 or more weeks

High-level language

None

2

Minimum—more
stringent requirements

Restricted—
parameterized for a
range of capacities

Small group

Infrequent

Single machine—
routine processing,
extended peripheral
system

3to5
10K to 50K

Routine corporate
operations

1 to 2 weeks
1 to 2 weeks
High-level and limited

assembly language

Limited

WEIGHTS
3

Limited—new interfaces

Limited flexibility—
allows some change in
format

Department

Occasional

Multicomputer—
standard peripheral
system

6to 10
50K to 200K

Important corporate
operations

3 to 7 days
1 to 7 days
High-level and extensive

assembly language

Moderate

4

Considerable—apply
existing state of the art
to environment

Multipurpose—
flexible format, range
of subjects
Division

Frequent
Multicomputer—
advanced
programming,
complex peripheral
system

11to 18

200K to 500K

Area/product survival

1 to 3 days

1 to 24 hours

Assembly language

Extensive

5

Extensive—requires
advance in state of the
art

Very flexible—able to
handle a broad range of
subject matter on
different equipment

Entire corporation

Continuous

Master control system—
multicomputer, auto
input/output, and
display equipment

More than 18
More than 500K

Corporate survival

1 to 24 hours

0 to 60 minutes

Machine language

Exhaustive

Figure 7-4 Example of weighting criteria.

and database specification is situationally dependent.

**The test analysis report logically should be prepared, but may be informal.

*Additional document types may be required at lower-weighted criteria totals to satisfy local requirements.

***Preparation of the project request document, cost/benefit analysis document, data requirements document,

Step 1: Organizing for Testing 177
-
g w =
= 5 frr
7] =TT F 4 4 2
" (¥] =) o
> - Z o = E = E 9w
o < ; o s o< < g =
= 2w >5 w & 2 2z 8 <
= Z = a o = [I TURTT] e = zZ
< Z > © X = - n o
= = - > U 2 (ST
S 2 2 3 w wWZ Vv w o W D
» 3 o = > 2 ™9 @ & oo
w > Z - <= D= > 5 = W oW
MZos ZEzzong I sz uwe2zz
< S E <2 S cow SY S g md @ wu
=S =S g S 7 8 fpE S T s g YOS
TOTAL Fe=292 . 393 ES . <3 <3 E23
WEIGHTED ¢ » o = M S Sofalesoke oo
CRITERIA w 5 0 & F L L0 v Fa 00 QA vUN
0 to 12* X
12 to 15* X X
Notes:

Figure 7-5 Total weighted documentation criteria versus required document types.

Figure 7-6 illustrates a simpler method to determine the level of documentation

needed. The four levels of documentation are:

1. Minimal. Level 1 documentation applies to single-use programs of minimal
complexity. This documentation should include the type of work being pro-

duced and a description of what the program really does. Therefore, the docu-

mentation that results from the development of the programs (i.e., program

abstract, compile listing, test cases) should be retained as well. The criteria for
categorizing a program as level 1 can be its expected use or its cost to develop

(in hours or dollars) and may be modified for the particular requirements of
the installation. Suggested cost criteria are programs requiring less than one

worker-month of effort or less than $1,000 (these are not assumed to be equal).

2. Internal. Level 2 documentation applies to special-purpose programs that, after

careful consideration, appear to have no sharing potential and to be designed

for use only by the requesting department. Large programs with a short life

expectancy also fall into this category. The documentation required (other than

178 Chapter 7

LEVEL

3

level 1) includes input/output formats, setup instructions, and sufficient com-
ments in the source code to provide clarification in the compile listing. The effort
spent toward formal documentation for level 2 programs should be minimal.

. Working document. Level 3 documentation applies to programs that are

expected to be used by several people in the same organization or that may be
transmitted on request to other organizations, contractors, or grantees. This
level should include all documentation types. The documentation should be
typed but need not be in a finished format suitable for publication. Usually, it is
not formally reviewed or edited; however, certain programs that are important
to the using organization but not considered appropriate for publication
should undergo a more stringent documentation review.

. Formal publication. Level 4 documentation applies to programs that are of

sufficient general interest and value to be announced outside the originating
installation. This level of documentation is also desirable if the program is to be
referenced by a technical publication or paper. You should include programs that
are critical to installation activities. These programs also should be formally doc-
umented, reviewed in depth, and subjected to configuration control procedures.
You should include recurring applications (payroll, for example) in this level so
that you maintain an accurate history of how the system has conformed to
changing laws, rules, and regulations.

DOCUMENTATION EXTENT OF
USE ELEMENTS EFFORT
Minimal Software summary plus any No special effort,
incidentally produced general good practice.

documentation.

Internal Level 1 plus user manual and Minimal documentation
operations manual. effort spent on informal
documentation. No
formal documentation

effort.

Working Document Level 2 plus functional All basic elements of
requirements document, documentation should
program specification, program be typewritten, but
maintenance manual, test plan, need not be prepared in
test analysis report, finished format for
system/subsystem specification, publication or require

and feasibility study document* external edit or review.

Formal Publication Level 3 produced in a form At a minimum, all basic
suitable for publication* elements prepared for
formal publication,
including external
review and edit.

*In addition, the following documents should be prepared, depending on the situation: data requirements,
database specification, project report, and cost/benefit analysis.

Figure 7-6 Alternate method for determining documentation.

Step 1: Organizing for Testing

179

Figure 7-6 summarizes the criteria for determining these levels of documentation.
Additional criteria specific to an installation regarding program-sharing potential, life
expectancy, and use frequency should also be considered when determining documen-
tation levels.

You can determine which of the four documentation levels is appropriate:

m As an alternate to the total weighted criteria score method.

m As a means of validating the correctness of the total weighted score to the
application system. If the same types of documentation are indicated by both
methods, you have greater assurance that the documentation indicated is the
correct one.

Determining the Completeness of Individual Documents

Testers should use Work Paper 7-2 to document the results of the completeness test. If
the documentation does not meet a criterion, the Comments column should be used to
explain the deficiency. This column becomes the test report on the completeness of the
documentation.

The 12 criteria used to evaluate the completeness of a document are as follows:

m Content. The suggested content for all the documents (except the software
summary) is included in a later section. A table of contents for each document
is followed by a brief description of each element within the document. These
document content guidelines should be used to determine whether the docu-
ment contains all the needed information.

m Audience. Each document type is written for a particular audience. The infor-
mation should be presented with the terminology and level of detail appropri-
ate to the audience.

m Redundancy. The 14 document types in this section have some redundancy. In
addition, most document types are specific (e.g., descriptions of input, output,
or equipment). Information that should be included in each of the document
types differs in context and sometimes in terminology and level of detail
because it is intended to be read by different audiences at different points in the
software life cycle.

m Flexibility. Flexibility in the use of the document results from the organization
of its contents.

m Size. Each document-type outline can be used to prepare documents that range
in size from a few to several hundred pages. Length depends on the size and
complexity of the project and the project manager’s judgment as to the level of
detail necessary for the environment in which the software will be developed
or run.

m Combining and expanding document types. It is occasionally necessary to
combine several document types under one cover or to produce several vol-
umes of the same document type. Document types that can be combined are
manuals for users, operations, and program maintenance. The contents of each

180 Chapter 7

document type should then be presented with the outline (e.g., Part I —Users,
Part II—Operations, and Part IIl—Program Maintenance).

For large systems, you can prepare a document for each module. Sometimes,
the size of a document may require it to be issued in multiple volumes to allow
ease of use. In such cases, the document should be separated at a section divi-
sion (e.g., the contents of the test plan may be divided into sections of plan,
specifications and evaluation, and specific test descriptions).

m Format. The content guidelines have been prepared in a generally consistent
format. This particular format has been tested, and its use is encouraged.

m Content sequence. In general, the order of the sections and paragraphs in a
particular document type should be the same as shown in the content guide-
lines. The order may be changed if it significantly enhances the presentation.

m Documenting multiple programs or multiple files. Many of the document con-
tent outlines anticipate and are adaptable to documenting a system and its sub-
systems, multiple programs, or multiple files. All these outlines can, of course, be
used for a single system, subsystem, program, database, or file.

m Section titles. These titles are generally the same as those shown in the content
guidelines. They may be modified to reflect terminology unique to the software
being documented if the change significantly enhances the presentation. Sec-
tions or paragraphs may be added or deleted as local requirements dictate.

m Flowcharts and decision tables. The graphic representations of some problem
solutions in the form of flowcharts or decision tables may be included in or
appended to the documents produced.

m Forms. The use of specific forms depends on organizational practices. Some
of the information specified in a paragraph in the content guidelines may be
recorded on such forms.

Determining Documentation Timeliness

Documentation that is not current is worthless. Most IT professionals believe that if
one part of the documentation is incorrect, other parts are probably incorrect, and they
are reluctant to use it.

The documentation test team can use any or all the following four tests to validate the
timeliness of documentation. These tests can be done on complete documents or parts
of documents. Testers familiar with statistics can perform sampling and validate the
timeliness of that sample. Testers should strive for a 95 percent confidence level that the
documentation is current.

m Use the documentation to change the application. Timeliness can be validated
with the same test process described in the preceding section. The timeliness
test enables the tester to search for and confirm consistency between the vari-
ous documents and to determine whether the documentation supports the
operational system.

Step 1: Organizing for Testing

181

m Compare the code with the documentation. This test uses the current version
of the programs as the correct basis for documentation. This test is usually
done on a sampling basis; the tester randomly selects several parts of the pro-
gram and traces them to the appropriate levels of documentation. The objective
is to determine whether the code is properly represented in the documentation.
Because this test is done statistically, a few variations might imply extensive
segments of obsolete documentation.

m Confirm documentation timeliness with documentation preparers. The indi-
viduals who prepare the documentation should be asked whether it is current.
Specific questions include:

m s this documentation 100 percent representative of the application in
operation?

m |s the documentation changed every time that a system change is made?

m Do the individuals who change the system rely on the documentation as
correct?

m Confirm the timeliness of documentation with end users. End users should
be asked whether the documentation for the system is current. Because end
users might not be familiar with all the contents of the documentation, they
may need to be selected on a sampling basis and asked about specific pieces of
documentation. Again, because sampling is used, a few variances may mean
extensive amounts of obsolete documentation.

Task 5: Validate the Test Estimate and
Project Status Reporting Process

Troubled projects have two common characteristics: The project estimate is inadequate
and the status report of the development effort is misleading.

The objective of validating the project estimate is to determine what resources will
be available to produce and test software. Resources include staff, computer time, and
elapsed time. Because a good estimate shows when and how costs will be incurred, it
can be used not only to justify software development and testing but also as a man-
agement control tool.

Testers need to know the progress of the system under development. The purpose of
project management systems and accounting systems is to monitor this progress.
However, many of these systems are more budget- and schedule-oriented than project
completion-oriented.

The tester’s main concern during the development is that inadequate resources and
time will be allocated to testing. Because much of the testing will be performed after
development is complete, the time period between completing development and the
due date for production may be inadequate for testing.

There are three general concerns regarding available time and resources for testing:

m Inaccurate estimate. The estimate for resources in time will not be sufficient to
complete the project as specified.

182 Chapter 7

Inadequate development process. The tools and procedures will not enable
developers to complete the project within the time constraints.

Incorrect status reporting. The project leaders will not know the correct status
of the project during early developmental stages and thus cannot take the nec-
essary corrective action in time to meet the scheduled completion dates.

Validating the Test Estimate

Many software projects are essentially innovative, and both history and logic suggest
that cost overruns may be to the result of an ineffective estimating system. Software
cost estimating is a complicated process because project development is influenced by
a large number of variables, many of which are subjective, non-quantifiable, and inter-
related in complex ways.

Some reasons for not obtaining a good estimate include:

A lack of understanding of the process of software development and
maintenance

Alack of understanding of the effects of various technical and
management constraints

A view that each project is unique, which inhibits project-to-project comparisons
A lack of historic data against which the model can be checked
Alack of historic data for calibration

An inadequate definition of the estimate’s objective (whether it is intended as a
project management tool or purely to aid in making a go-ahead decision) and
at what stage the estimate is required so that inputs and outputs can be chosen
appropriately

Inadequate specifications of the scope of the estimate (what is included and
what is excluded)

An inadequate understanding of the premises on which the estimate is based

Strategies for Software Cost Estimating

There are five commonly used methods for estimating the cost of developing and
maintaining a software system:

Seat-of-the-pants method. This method, which is often based on personal
experience, is still very popular because no better method has been proven.
One of its problems is that each estimate is based on different experience, and
therefore different estimates of the cost of a single project may vary widely. A
second problem is that the estimator must have experience with a similar proj-
ect, of a similar size. Experience does not work on systems larger than those
used for comparison nor on systems with a totally different content.

Constraint method. The constraint method is equivalent to taking an educated
guess. Based on schedule, cost, or staffing constraints, a manager agrees to

Step 1: Organizing for Testing 183

develop the software within the constraints. The constraints are not related to
the complexity of the project. In general, this method will result in delivery of
the software within the specified constraints, but with the specification
adjusted to fit the constraints.

m Percentage-of-hardware method. This method is based on the
following two assumptions:

m Software costs are a fixed percentage of hardware costs.
m Hardware cost estimates are usually reasonably accurate.

A study on estimating has indicated that the first of these assumptions is not
justified.

m Simulation method. Simulation is widely used in estimating life cycle support
costs for hardware systems, but it is not appropriate for software cost estimat-
ing because it is based on a statistical analysis of hardware failure rates and
ignores logistics for which there is no software equivalent.

m Parametric modeling method. Parametric models comprise the most com-
monly used estimating method and are described in the following section.

Parametric Models

Parametric models can be divided into three classes: regression, heuristic, and
phenomenological.

m Regression models. The quantity to be estimated is mathematically related to
a set of input parameters. The parameters of the hypothesized relationship are
arrived at by statistical analysis and curve fitting on an appropriate historical
database. There may be more than one relationship to deal with different data-
bases, different types of applications, and different developer characteristics.

m Heuristic models. In a heuristic model, observation and interpretation of his-
torical data are combined with supposition and experience. Relationships
between variables are stated without justification. The advantage of heuristic
models is that they need not wait for formal relationships to be established that
describe how the cost-driving variables are related. Over a period of time, a
given model can become very effective in a stable predicting environment. If
the model fails, it is adjusted to deal with the situation. It therefore becomes a
repository for the collected experiences and insights of the designers.

m Phenomenological models. The phenomenological model is based on a
hypothesis that the software development process can be explained in terms of
some more widely applicable process or idea. For example, the Putnam model
is based on the belief that the distribution of effort during the software life
cycle has the same characteristics as the distribution of effort required to solve
a given number of problems given a constant learning rate.

Most of the estimating models follow a similar pattern, based on the following
six steps. Not all steps occur in all models. For example, some models do not initially

184 Chapter 7

perform a total project labor or cost estimate, but start by estimating the different
phases separately, so Step 4 aggregates the separate estimates instead of dividing up
the total estimate. Similarly the adjustments for special project characteristics may
occur between Steps 1 and 2 as well as or instead of between Steps 2 and 3.

1.

Estimate the software size. Most models start from an estimate of project size,
although some models include algorithms for computing size from various other
system characteristics, such as units of work.

Convert the size estimate (function points or lines of code) to an estimate of
the person-hours needed to complete the test task. Some models convert from
size to labor, whereas others go directly from size to money estimates.

Adjust the estimate for special project characteristics. In some models, an
effective size is calculated from the basic size estimate obtained in Step 1;

in others, a person-hours or cost estimate is calculated from the estimates
obtained in Step 2. The estimate is an adjustment of the basic estimate intended
to take account of any special project characteristics that make it dissimilar to
the pattern absorbed in the underlying historical database. Such variations,
which include the effect of volatility of the requirements, different software
tools, difficulty above the level of projects in the database, or a different
method of dealing with support costs, are frequently based on intuitively
derived relationships, unsupported by statistical verification.

The adjustment may precede amalgamation of the costs of the different phases,
or a single adjustment may be applied to the total.

Divide the total estimate into the different project phases. Each model deal-
ing with a project’s schedule makes assumptions about the allocation of effort
in the different project phases. The simplest assumption defines a percentage of
the effort for each phase, for example, the much-quoted 40 percent design, 20
percent code, and 40 percent test rule. It should be noted that this is not a uni-
versally agreed-on rule. Some estimating research shows that other percentages
may be more appropriate, and the percentage in each phase may depend on
other software characteristics. Some models assume that staffing allocation
with respect to time follows a rectangular distribution; others assume that it
follows a beta distribution, or a Rayleigh distribution. In general, the assump-
tions on staffing allocation with respect to time are based on historical data.
The effect of deviating from historical patterns has not been considered.

Estimate the computer time and non-technical labor costs. Where these costs
are explicitly included, they are often calculated as a percentage of the technical
labor costs. Sometimes such costs are included implicitly because they were
included in the database from which the model was derived.

Sum the costs. The non-technical labor costs and the cost of computer time,
where these are included in the estimates, are added to the technical costs
of the different phases of the software life cycle to obtain an aggregated cost
estimate.

Step 1: Organizing for Testing

185

Testing the Validity of the Software Cost Estimate

An improper cost estimate can do more damage to the quality of a software project than
almost any other single factor. People tend to do that which they are measured on. If they
are measured on meeting a software cost estimate, they will normally meet that estimate.
If the estimate is incorrect, the project team will make whatever compromises are neces-
sary to meet that estimate. This process of compromise can significantly undermine the
quality of the delivered project. The net result is increased maintenance costs, dissatisfied
customers, increased effort in the customer area to compensate for software system
weaknesses, and discouraged, demoralized project personnel.

Estimating software costs is just that—estimating. No one can guarantee that the
software estimate will be correct for the work to be performed. However, testing can
increase the validity of the estimate, and thus is a worthwhile endeavor. Testing of a
software estimate is a three-part process, as follows:

1. Validate the reasonableness of the estimating model.
2. Validate that the model includes all the needed factors.

3. Verify the correctness of the cost-estimating model estimate.

Validate the Reasonableness of the Estimating Model

Work Paper 7-3 lists the 14 characteristics of a desirable estimating model. The work-
sheet provides a place to indicate whether the attributes are present or absent, and any
comments you care to make about the inclusion or exclusion of those characteristics.
The closer the number comes to 14, the more reliance you can place on your software-
estimating model.

Validate That the Model Includes All the Needed Factors

The factors that influence the cost of a software project can be divided into those con-
tributed by the development and maintenance organization, many of which are sub-
jective, and those inherent in the software project itself. Current models differ with
respect to the factors that are required as specific inputs. Many different factors may
be subsumed in a single parameter in some models, particularly the more subjective
parameters.

Depending on the information fed to the model, the estimate produced can vary sig-
nificantly. It is important that all the factors that influence software costs are properly
entered into the model. Models can produce incorrect results in two ways. First, the
factor can be excluded from the model, resulting in an incorrect estimate. Second, the
factor can be incomplete or incorrectly entered into the model, again causing incorrect
software cost estimates to be produced.

Work Paper 7-4 lists the factors that can influence software costs. Testers must deter-
mine whether a missing factor will significantly affect the actual costs of building the
software. Factors that influence the software system include:

m Size of the software. A favorite measure for software system size is lines of oper-
ational code, or deliverable code (operational code plus supporting code, for
example, for hardware diagnostics) measured either in object code statements or

186 Chapter 7

in source code statements. It is rarely specified whether source code statements
include non-executable code, such as comments and data declarations.

m Percentage of the design and/or code that is new. This is relevant when mov-
ing existing software systems to new hardware, when planning an extension to
or modification of an existing software
system, or when using software prototypes.

m Complexity of the software. Different software projects have different degrees
of complexity, usually measured by the amount of interaction between the dif-
ferent parts of the software system, and between the software and the external
world. The complexity affects programmer productivity and is an input para-
meter for several models.

m Difficulty of implementing the software requirements. Different application
areas are considered to have different levels of difficulty in design and coding,
affecting programmer productivity. For example, operating system software is
usually regarded as more difficult than standalone commercial applications.
Software projects might be given a difficulty or an application mix rating,
according to the degree to which they fall into one (or more) of the following
areas:

m Operating systems

m Self-contained real-time projects

m Standalone, non-real-time applications

m Modifications to an existing software system

There are, of course, other categories. Each model deals with the difficulty in its
own way, some requiring estimates of the percentage of each type of software
system, others asking for a number on a predefined scale. Others merge the fac-
tor with the complexity rating.

m Quality. Quality, documentation, maintainability, and reliability standards
required are all included in a single factor. This factor is sometimes called the
platform type, reflecting the fact that the documentation and reliability require-
ments for software in a manned spacecraft are higher than in a standalone sta-
tistical package. The documentation and reliability requirements may be given
a defined numeric scale—for example, from 1 to 10. Some estimating models
include a parameter for the number of different locations at which the software
will be run.

m Languages to be used. The choice of programming language affects the cost,
size, timescale, and documentation effort.

m Security classification. The higher the security classification of the project, the
more it will cost because of the additional precautions required. The security
classification is not an input factor in most models.

m Volatility of the requirement. The firmness of the requirement specification
and the interface between developer and customer affect the amount of rework

Step 1: Organizing for Testing 187

that will be needed before the software is delivered. This highly subjective but
nonetheless important factor is an input factor to several models. The following
are included in this factor:

m Amount of change expected in the requirement
m Amount of detail omitted from the requirement specification

m Concurrent development of associated hardware, causing changes in the
software specification

m Unspecified target hardware
Organization-dependent factors include the following;:

m Project schedule. Attempts to save time by adding more people to a project
prove counterproductive because more time and effort are expended in com-
munication between project team members than can be gained by adding extra
people. There must therefore be either a minimum time below which the proj-
ect cannot be completed or at least a time below which the costs of saving a
small amount of time become prohibitive. Conversely, if more time is allocated
to a project than is required, it has been argued that the cost decreases. How-
ever, other models show costs increasing if more than some optimum time is
allocated because more personnel are consumed. One effect of the compression
of timescales is that work that should be done in series is undertaken in paral-
lel, with the increased risk that some of the work will have to be scrapped (e.g.,
if coding is started before design is complete).

Not all models deal with project schedules. Of those that do, some assume the
40-20-40 rule (40 percent design, 20 percent coding, and 40 percent testing),
and others use more elaborate scheduling assumptions. Some research throws
doubt on the validity of the 40-20-40 rule and indicates that phases are strongly
interrelated, so effort skimped in one phase will probably result in a consider-
able increase in the effort needed in a later phase.

m Personnel. The personnel assigned to a project contribute to the cost. Most proj-
ects are resource limited, in that the number of people with a given skill who
are available to the project is limited. The number of personnel available at any
stage in a project will affect the timescales, and hence the cost. An industrial
engineering model called the “Raleigh Curve” shows the relationship between
the number of assigned staff and project effectiveness.

m Technical competence. Effective projects are staffed with personnel with
the competence needed to complete the project successfully. A less compe-
tent staff will increase the cost and schedule of the defined testing tasks.

m Non-technical staff. Estimates of the non-technical personnel levels
required by a project are frequently made as a percentage of the technical
personnel levels.

m Development environment. The adequacy of the development environment,
both in hardware and software, depends largely on the management of the

188 Chapter 7

development organization. This factor is not usually requested as an explicit
input to a model, but may be implicit in the calibration of the model, or in some
general management parameter. The following are three aspects of the devel-
opment environment that are sometimes required as inputs:

m Development machine. The adequacy of the development machine as a host
for developing software for the selected target, and the availability of the
development machine to the software development personnel, will affect
both the schedule and the cost of a software development. The study showed
that time sharing, where the development machine is constantly available, is
20 percent more productive than batch systems for software development.

m Availability of associated software and hardware. Projected late delivery
of some item of associated hardware or software can affect schedules and
costs.

m Software tools and techniques used during system design and develop-
ment. Newer tools and techniques, properly applied, can reduce develop-
ment effort.

m Resources not directly attributable to technical aspects of the project. The
development organization’s management style affects the amount of effort team
members expend communicating with each other, the level of non-technical
effort involved, as well as software/hardware costs, subcontracting costs, and
profit. These factors are usually ignored, are implicit in the database from
which the model is derived, or are taken care of by a general management fac-
tor. The geographical distribution of the development organization may affect
costs because of travel and the cost of transmitting data between sites, and is
therefore input to some models.

m Labor rates. If the model estimates costs in terms of money rather than staff-
hours, the relationship of labor costs to staff-hours within the development orga-
nization may be required by the model. The model may be capable of reflecting
increased rates for staff required to work irregular hours because of decreases in
the development timescale or lack of availability of development tools.

m Inflation. Costs estimated in terms of money rather than staff hours should
include inflation rates if the project will last more than 12 months.

Verify the Correctness of the Cost-Estimating Model Estimate

The amount of testing of the produced estimate will depend on the reasonableness of
the estimating model and the completeness of the influencing factors included in the
model. The less the tester can rely on the model, the more testing that needs to be per-
formed on the validity of the estimate produced by the model.

The following four steps are suggested when testing the validity of the estimate pro-
duced by the software cost-estimating model:

m Recalculate the estimate. The tester can validate the processing of the estimate
by rerunning the estimating model. The purpose of this is to:

Step 1: Organizing for Testing 189

m Validate the input was entered correctly
m Validate the input was reasonable
m Validate the mathematical computation was performed correctly

This test can be done in totality or in part. For example, the tester can completely
recalculate the estimate, check that the input going into the estimating model
was correct, test the reasonableness of some of the input test by recalculating all
or parts of the estimate, and so forth.

m Compare produced estimate to similar projects. The tester can determine how
long it took to develop projects of similar size and complexity. These actual proj-
ect costs should be available from the organization’s accounting system. The esti-
mate produced by the estimating system is then compared to the actual costs for
like projects completed in the past. If there is any significant difference, the tester
can challenge the validity of the estimate. This challenge may result in a recalcu-
lation or change of the estimate based on previous experience.

m The prudent person test. This test is similar to the preceding test in that past
experience is utilized. The tester documents the factors influencing the cost
estimate, documents the estimate produced by the estimating system, and then
validates the reasonableness of that estimate by asking experienced project
leaders for their opinions regarding the validity of the estimate. It is recom-
mended that three experienced project leaders be asked to validate the esti-
mate. If one or more does not feel that the estimate is reasonable, the validity
of the estimate should be challenged.

m Redundancy in software cost estimating. This test has the tester recalculate the
estimate using another cost-estimating model. For example, assume that your
organization has developed a cost-estimating model. The project people have
used that model to develop the cost estimate. The tester uses another method, for
example, a software-estimating package. If the two estimating systems produce
approximately the same estimate, the reliance on that estimate is increased. On
the other hand, if there is a significant variance between the estimates using the
two methods, then the tester needs to pursue additional investigation.

Sources of software estimating models include:

m QOrganization-developed estimating models

m FEstimating models included in system development methodologies
m Software packages for developing software estimates

m Function points in estimating software costs

Calculating the Project Status Using a Point System

The suggested project status test is based on a simple point-accumulation system. The
points can then be compared to the project management or accounting system progress

190

Chapter 7

report. If the results of the two progress measurement systems differ, testers can chal-
lenge the validity of the results produced by the project management and/or account-
ing system.

The point system provides an objective, accurate, efficient means of collecting and
reporting performance data in an engineering field that often lacks visibility. The
method uses data based on deliverable software items and collected as a normal part
of the development process. The results are easily interpreted and can be presented in
a number of formats and sub-divisions. The scheme is flexible and can be modified to
meet the needs of projects, both large and small.

Overview of the Point Accumulation Tracking System

The increasing complexity of software systems, combined with the requirements for
structured and modular designs, has increased significantly the number of software ele-
ments developed and delivered on recent simulator programs. The increased number of
elements and the traditionally “soft” milestones used to measure progress have made
monitoring software development and predicting future progress time-consuming,
subjective, and often unreliable.

A tracking system that uses an earned point scheme has been successfully used to
monitor software development on several large tests. Points are assigned for each step
in the software development cycle on a per-element basis. The steps are “hard” mile-
stones in which a generated product is accepted by program management. As the
products are accepted, the associated points are earned. The ratio of earned points to
total possible points is compiled on an element, functional area, or total software sys-
tem basis to determine progress achieved. A program that generates reports, usually
resident on the simulator computational system, tabulates the data in a variety of man-
agement reports.

The system as implemented is flexible, highly automated, and closely coupled to
configuration management systems and software quality assurance procedures to
ensure the validity of data. Simple calculations or comparisons of the accumulated
point values provide an accurate measure of progress, deviation from schedule, and
prediction of future progress.

Typical Methods of Measuring Performance

Performance in software development is measured typically either by estimating the
percentage of a task completed or by counting the number of predetermined milestones
that have been reached. In the estimate of percent completed method, the person per-
forming the work estimates the percent of the work that has been accomplished in reach-
ing a milestone or completing a task. The percent completed method has several faults.
The major fault is that the measurement is subjective. The manager is asking a person
with a vested interest in completing the task as early as possible to make an educated
guess as to how nearly complete it is. Most people tend to be optimistic in their ability to
complete a task—particularly if their manager subtly encourages optimism. The old bro-
mide of a task being 95 percent complete for months is all too true.

A potential shortcoming of this method when used with tasks rather than milestones
is that the definition of completion is not always stated. Therefore, the person making the

Step 1: Organizing for Testing

191

estimate may have one perception of what the task includes, whereas the manager may
have another. Hence, when the programmer states the task is 100 percent complete—
written, tested, and documented—the manager may have an unpleasant surprise when
he or she asks to see the installation guide. Therefore, because the end of the task may not
be clearly defined, the estimates of completion may be quite inaccurate.

Because the estimates are subjective, the interpretation of the results may also be sub-
jective. In trying to ascertain the degree of completeness of a job, a manager may ask who
made the estimate and then apply a “correction factor” to the estimate for that person to
get a number he feels comfortable with.

The second method, the milestone method, attempts to alleviate these problems by
defining specific milestones that must be met and measuring performance by summing
the number of milestones that have been met. This method is much more objective, tends
to describe the overall task more fully, and, as a result, is easier to interpret. The short-
comings of this method are more in the area of resolution of the measurement versus the
efficiency of collecting, collating, and presenting the results in a meaningful way.

To get the resolution of measurement fine enough to show incremental progress on
a periodic basis, numerous milestones need to be defined. However, the large number
of milestones makes it more difficult to collect and present the data in a timely and
meaningful way. A common method is to present the data on bar graphs, but on a large
project with thousands of milestones, the upkeep of bar graphs can be a slow, expen-
sive effort.

Another potential problem is that the milestone may not accurately reflect the real
task. If care is not taken to define the milestone, the milestone may not be based on
deliverable items, but on something that appears to show progress, such as lines of code
generated. Also, if the milestones are not carefully chosen, it may be difficult to deter-
mine if the milestone has been reached.

These performance measurement tools and techniques emphasize functions per-
formed early in the life of a project. Less information is available on the ongoing man-
agement function of control. Control can be thought of as a three-step process: An
attribute or characteristic of interest is measured, the measured value is compared with
an expected or baseline value, and an appropriate action is taken if an unacceptable
deviation exists. Any number of items of interest during software development may be
controlled in this manner. Development time, development costs, computer memory
usage, and computer time are some of the more common items.

A performance measurement scheme should meet several criteria. First and most
important, the scheme should be objective. The person claiming performance should
not be required to estimate degree of completion. Likewise, the person monitoring per-
formance should know exactly what a performance measurement represents. Ideally,
the state of development should be sufficiently visible and the measurement means
sufficiently clear to enable any project member to make the actual measurement.

Second, the scheme should measure performance in accomplishing the real task
(i.e., the development of deliverable software). Further, the resolution of the measuring
scheme should be sufficiently fine to measure incremental progress on a weekly or
monthly basis, and the measurement should be timely in that it measures the current
state of development. Providing accurate, current performance information on a peri-
odic basis can be a positive motivating factor for a programming staff.

192

Chapter 7

Finally, the scheme must be efficient. It should require minimal resources to collect,
collate, and report performance data and should require minimum time to interpret
the results. Systems that require constant inputs from the programming staff, updates
by clerical personnel, or integration of large amounts of data by management should
not be used.

Using the Point System

The point system is really an extension to the milestone system that lends itself to
automation. In its simplest form, it is assumed that each software module goes through
a similar development process and that the process comprises clearly identifiable mile-
stones. For example, assume ten modules will be developed and four milestones will
define the development process. The milestones may represent a reviewed and accepted
design, a completed code walkthrough, verified test results, and a released module.

In the simple case, each milestone for each software item is worth 1 point. In the case
of the system with ten modules, 40 points can be earned. As part of each design review,
code walkthrough, test verification, or release audit, the milestone is achieved and the
corresponding point earned. By including the milestones achieved (points earned) and
creating a few simple generators, you can get an objective, accurate, and timely measure
of performance. Figure 7-7 shows what a simple status report might look like.

This simplified scheme works well for a homogeneous set of modules, where all
modules are of the same complexity and each of the milestones represents an approxi-
mately equal amount of work. Through an introduction of weighting factors, you can
easily handle modules of varying complexity or milestones representing unequal
effort to complete.

Before this and other extensions are discussed, however, a brief description of
implementation is in order. The heart of the system is a computer data file and a few
simple report generators. The data file is simply a collection of records, one for each
item that is to be tracked, that contains fields to indicate whether a particular milestone
has been met. Usually, it is advantageous to include the following fields: item descrip-
tion, analyst responsible, work package identification, as well as various file identifi-
cation fields. Often such a file will serve multiple uses, particularly if a few additional
fields are added. Typical uses include family tree definition, specification cross-refer-
ences, configuration control lists, and documentation cross-references.

Maintaining or updating the file can be as straightforward as modifying records
with a line editor or as complex as building a special-purpose interactive update pro-
gram. Some means of limited access should be used to restrict unauthorized modifica-
tion of the file, particularly if some of the other uses of the file are sensitive to change.

Once the file is updated to include an entry of the module under development, the
milestone status fields are updated as the milestones are met. In some cases this may be
a manual process; once an event has occurred and the milestone achieved, a program
librarian or other authorized person updates the status file. In other instances, in a more
sophisticated system, a computer program could determine that a milestone event has
occurred and automatically update the milestone status.

Step 1: Organizing for Testing

193

SOFTWARE STATUS REPORT

POINTS

DESIGN CODE TEST RELEASE EARNED
Module A 1 1 2
Module B 1 1
Module C 1 1
Module D 1 1 1 3
Module E 1 1 2
Module F 1 1
Module G 1 1 2
Module H 1 1 1 1 4
Module | 1 1
Module J 1 1 2
TOTALS 10 6 2 1 19
PERCENT COMPLETE = 19/40 = 48%

Figure 7-7 Simple status report.

After the file has been built, programs to generate reports are written to print the sta-
tus. For smaller projects, a program that simply prints each record, sums the earned
and defined points, and calculates the percent points earned may be sufficient. Larger
projects may need several reports for different subsystems or summary reports that
emphasize change.

Extensions

A number of extensions can be added to the scheme as described so far. The first is to
add a method of weighting modules and/or milestones. While weighting all modules
equally on a large program where many (over 1,000) modules exist appears to give
good results, smaller programs with few modules may need to weight the modules to
give a sufficiently accurate performance measurement. Also, depending on the level of
visibility of the measuring system and the attitude of the personnel involved, there may
be a tendency to do all the “easy” modules first to show early performance.

Asimilar argument can be made for weighting milestones. Depending on the accep-
tance criteria, some milestones may involve more work than others. Therefore, achiev-
ing those milestones represents accomplishing a greater amount of work than in
meeting other milestones. Further, there may be instances where a combination of
module weight and milestone weight may interact. An example is a module that was

194

Chapter 7

previously written on another project in a different language. The amount of design
work for that module may be considerably less than a module designed from scratch,
but the amount of effort to code the routine might be more because an unfamiliar lan-
guage may be involved.

The weighting scheme is easily implemented by assigning points to each milestone
for all modules. Then, as a milestone is earned, the assigned points are added to the total
earned and divided by the total defined points to compute percent completion. The
number of points assigned to each milestone is in proportion to the difficulty in achiev-
ing the milestone, and, in fact, relates directly to the estimated number of hours needed
to complete the milestone. When assigning points, it is recommended that points first be
assigned to each of the modules and then reapportioned to the milestones.

A second extension is to add selecting and sorting options to the programs that gen-
erate the reports. Selecting options allows the user to select all entries in the file by some
field, such as work package number, file name, software family tree component, or
responsible analyst. Once the entries of interest are selected, the sort option allows the
user to order the entries by some key. The points earned and points defined are summed
from the selected entries and the percent complete calculated. Therefore, reports can be
printed listing all modules and percent complete for a certain analyst, work package, or
other selected criteria. It has been found valuable to allow Boolean operations on selec-
tion fields (analyst A and subsystem B) and to provide for major and minor sort fields
(for example, to list modules in alphabetical order by analyst).

A third extension is to add target dates and actual completion dates to each module
record. In this extension the individual milestone status fields are replaced by two
dates. The first date field is a target date indicating when the milestone should be met.
The target dates do not have to be used for all modules or milestones but are useful
where interdependency exists between a particular module milestone and some other
element in the system. These interdependencies may exist in the design stage to some
extent, but they become very important during the integration phase of a project.

The actual completion date field becomes a flag identifying when the milestone is
achieved. By adding up the points assigned to a milestone that have an actual date
entered in the file, the percent complete can be computed.

Using the two date fields has two advantages: You can monitor schedule interde-
pendence and a historical record exists for future analysis. By making the date fields
selectable and sortable, additional reports can be generated. Assuming that an integra-
tion milestone has been identified, a list of all modules of interest can be selected by
work package number, family tree identification, or individual module name. Target
dates for the milestone of interest can then be entered. As the date of the integration
milestone comes closer, lists of all modules of interest that have a particular due date
and have not been completed can be provided to the responsible analyst or work pack-
age manager. Judicious use of these lists on a periodic basis can be used to monitor and
motivate the programming staff to ensure that the milestone is met. Usually, several of
these lists in various stages are active at once as key milestones are coming up. It has
been found that choosing approximately one major milestone a month and starting the
list several months in advance of the target date is very effective. More milestones than

Step 1: Organizing for Testing

195

this tend to set up multiple or conflicting goals for the individual analysts. Also, the
lists need to be started well enough in advance to allow suitable time for the work to
be completed and to enable you to institute workarounds if problems arise.

It should be noted that the meeting of these interdependency dates is really separate
from performance measurement. It is possible that in a given subsystem the perfor-
mance may be fully adequate, say 75 percent complete, but a key integration event
may have been missed. The manager must be aware of both elements. If performance
is where it should be but an integration event has been missed, it may mean the man-
ager’s people are not concentrating on the right item and need to be redirected.

Rolling Baseline

A potential problem with the point system described thus far has to do with an effect
known as a rolling baseline. The rolling baseline occurs over the life of a program as new
items are continually defined and added to the status file. This has the effect of chang-
ing the baseline, which causes percent complete to vary independently of milestones
earned. During periods when few new items are added to the file, the percent complete
accurately reflects real performance. At other times, as new items are added as quickly
as previously defined milestones are met, reported progress tends to flatten out. In
some instances where more new items were added than old items completed, negative
progress is reported.

This problem is overcome by freeing the baseline for a unit of work or work package
and reporting progress on the unit. That is, once a package of work is defined, no new
points are allocated to the package. If, for some reason, it is decided certain modules have
to be split up for the sake of modularity or computing efficiency, the points are likewise
split up. In the instance where the scope of work changes because of an oversight or con-
tract change, the effort is reprogrammed and either new work packages are created or
existing work packages are expanded with a corresponding increase of points.

This has the effect of measuring performance on active or open work packages only,
not on the system as a whole. However, because performance is being compared to an
established schedule, which is also made up of units of work, the comparison is valid
and useful.

Reports

Several informative detail and summary reports can be generated from the data file.
The most encompassing detail report, of course, is a listing of all elements. Such a list
may be useful in creating inventory lists of software items to be delivered and might be
used during physical configuration audits. Other lists may be sorted and/or selected
by work package or family tree identification number. Such lists show status of specific
modules within subsets of the work breakdown structure or functional items of the
system. Other sorts or selections by a responsible analyst show status of a particular
individual’s effort. Figures 7-8 through 7-11 show sample summary reports. Collecting
data from several summary runs allows rates of completion to be calculated, upon
which trends or predictions of future performance can be made.

FILENAME

F.UDHEAD

F.UDLIST

F.UDLTST

F.UDMAT

F .UDMOVE

F.UDOPT

ID

DF-U150

DF-U151

DF-U152

DF-U153

DF-U154

DF-U155

RA

MKM

MKM

MKM

MKM

MKM

MKM

CLASS

DESCRIPTION

PRINT HEADING FOR DELTA

LISTING (CONFIG)

PRINT DELTA LISTING (CONFIG)

START UDELTA SUBTASKING (CONFIG)

CHECK BUFFERS FOR MATCH (CONFIG)

MOVE DATA INTO MEMORY (CONFIG)

SET OPTIONS IN DELTA (CONFIG)

DESIGN

-./--/--
01/27/00

../../._
01/31/00

../.-/..
01/31/00

-_/_./.-
01/14/00

../../..
02/02/00

)/
02701700

CODE

.-/._/-.
02/08/00

_A/-./-.
02/10/00

-./../..
02/15/00

../._/..
../_./._
03/01/00

../.-/..
02/28/00

Detail Interdependency Listing

TEST

.-/-./.-
03/15/00

-./--/..
03/15/00

./-./.

_-/--/--

../../._
04/04/00

._/-_/..
04/14/00

RELEASE

04/15/00
04/21/00

04/15/00
04/21/00

04/15/00

04/15/00

04/15/00
04/11/00

04/15/00
04/11/00

Figure 7-8 Detail interdependency listing.

WP: TACTICS LIBRARY SOFTWARE
MANAGER: NFB

------------------------- MILESTONES----===---=scczcemmmnann -----------MODULE STATUS-----------
WORK FILENAME WEIGHT DESIGN CODE TEST RELE- STATUS SCORE % COMPLETE
PACKAGE ASE CODE
173F F.LEDCPY 8 2 2 2 2 3 4 50
173F F.LEDEL 8 2 2 2 2 3 4 50
173F F.LEDFIL 44 1 1 1 11 1 11 25
173F F.LEDINF 20 5 5 5 5 1 5 25
173F F.LEDPRT 12 3 3 3 3 7 12 75
173F F.LIBEDT 16 4 4 4 4 3 8 75
173F F.LIBGEN 28 7 7 7 7 15 28 100
173F F.LTACGN 16 4 4 4 4 3 8 50
173F F.LTACID 8 2 2 2 2 15 8 100
173F F.LTASTA 32 16 0 0 16 7 16 50
173F F.LTCMPR 16 8 0 0 8 15 16 100
173F F.LTCMST 56 28 14 14 0 0 0 0
173F F.LTCVRT 12 3 0 0 3 0 0 0
173F F.LTGNUM 12 3 3 3 3 0 0 0
173F F.LTINIT 12 3 3 3 3 0 0 0
173F F.LTMDID 16 4 4 4 4 0 0 0
173F F.LTREC 32 8 8 8 8 0 0 0
173F F.LTSSTM 48 2% 6 12 6 1 24 50
173F F.LTUCHK 8 4 1 2 1 3 5 63
173F F.LTUCVT 12 6 2 3 1 7 11 92
173F F.LTVALU 8 4 1 2 1 15 8 100
TOTALS: 21 424 106 106 106 106 168 40

Figure 7-9 Detail status listing.

WORK PACKAGE: 1234

DESIGN CODE TEST RELEASE TOTAL
TOTAL ITEMS 24 24 24 24 96
TARGET COMPLETE 10 42% 7 29% 3 13% 0 0% 20 21%
ACTUAL COMPLETE 9 38% 5 21% 1 4% 0 0% 15 16%
LATE 1 4% 2 8% 2 8% 0 0% 5 5%
LESS THAN 1 WEEK 0 1 0 0
LATE
1-2 WEEKS LATE 1 0 2 0
2-4 WEEKS LATE 0 1 0 0
4-8 WEEKS LATE 0 0 0 0
MORE THAN 8 WEEKS 0 0 0 0
LATE

Figure 7-10 Summary report.

WORK
PACKAGE

1736
173H
173K

17A1
17A3

17A4
17A5

17A7

TOTALS:

DESCRIPTION

SCAN LIBRARY SOFTWARE

PPG LIBRARY SOFTWARE
EMITTER SCRIPTING: EMTR
1-50

TD REPORTING CPPS

TD REPORTING SW DEVELOP-
MENT

SCAN PROCESSOR DOCUMENTA-
TION

TIMS, DEBUG, SVL DOCUMEN-
TATION

SOFTWARE DEV TOOLS DOCU-
MENT

MGR

NFB
NFB
NFB

TJR
TJR

TJR

TJR

------------------- MILESTONES---------===-===--= -------WP STATUS------
WEIGHT DESIGN CODE TEST RELEASE SCORE % COMPLETE
480 120 120 120 120 150 31
296 7% 74 74 7% 74 25
2500 2250 250 0 0 1055 42
310 155 155 0 310 310 100
1230 375 375 240 240 575 47
1078 863 215 0 0 0 0
7420 6550 870 0 0 3465 47
4818 3563 1255 0 0 3563 73
18132 13950 3314 434 434 9192 51

Figure 7-11

Summary status report.

200 Chapter7

Check Procedures

Work Paper 7-5 is a quality control checklist for this step. It is designed so that Yes
responses indicate good test practices and No responses warrant additional investiga-
tion. A Comments column is provided to explain No responses and to record investiga-
tion results. The N/ A column should be used when the checklist item is not applicable to
the test situation.

Output

The output from this step includes a test manager, a definition of the scope of testing,
an organized test team, and verification that development documentation is complete.
Another output from this step is a report to the project personnel on the adequacy of
the test estimate and the reasonableness of the project status. Note that this step may
need to be repeated periodically as the project plan changes. Testers may also want to
evaluate the reasonableness of the status report multiple times during the develop-
ment process.

Summary

Time spent organizing for a test project will reduce the overall test effort. The five orga-
nizing tasks described in this chapter are an important prerequisite to test planning. It
is less important as to who does the tasks, and when the tasks are performed, than the
fact that the tasks are performed.

Step 1: Organizing for Testing 201

WORK PAPER 7-1 Calculation of Total Weighted Documentation Criteria

Score

CRITERION

WEIGHT

EXPLANATION

Hwnh =

VXN,

10.

11.
12.

Originality required
Degree of generality
Span of operation

Change in scope and
objective

Equipment complexity
Personnel assigned
Developmental cost
Criticality

Average response time
to program change

Average response time
to data input

Programming languages

Concurrent software
development

Total Weighted Criteria Score:

202 Chapter 7

WORK PAPER 7-2 Testing Documentation Completeness

COMPLETENESS CRITERION

ADEQUATE

INADEQUATE

COMMENTS

®© N

10.
11.

12.

o hwnh =

Content

Audience

Redundancy

Flexibility

Size

Combining and expanding
of document types

Format

Content sequence

Documenting of multiple
programs or multiple files

Section titles

Flowcharts and decision
tables

Forms

WORK PAPER 7-3 Characteristics Included/Excluded from Your Organization’s Software Estimating Model

Name of Model:

CHARACTERISTIC INCLUDED EXCLUDED COMMENTS

1. The model should have well-defined scope.

(It should be clear which activities associated with the software life cycle are
taken into account in the model and which are excluded. It should also be
clear which resources—manpower, computer time, and elapsed time—are
being estimated, and whether costs of support software are included.)

2. The model should be widely applicable.

(It should be possible to tailor a model to fit individual organizations, and
types of software development.)

3. The model should be easy to use.

(Input requirements should be kept to a minimum, and output should be
provided in an immediately useful format.)

4. The model should be able to use actual project data as it becomes available.

(Initial project cost estimates are likely to be based on inadequate
information. As a project proceeds, more accurate data becomes available
for cost estimating. It is essential that any estimating model be capable of
using actual data gathered at any stage in the project life to update the
model and provide refined estimates, probably with a lower likely range of
values than achieved initially.

Estimating is based on a probabilistic model. This means that an estimate is
a number in the likely range of the quantity being estimated, and
confidence in the estimate depends on the likely range of the quantity being
estimated. The better the information we have on which to base an
estimate, the smaller the likely range and the greater the confidence.)

5. The model should allow for the use of historic data in the calibration for a
particular organization and type of software.

6. The model should have been checked against a reasonable number of
historic projects.

(continues)

WORK PAPER 7-3 (continued)

Name of Model:

CHARACTERISTIC

INCLUDED

EXCLUDED

COMMENTS

11.

12.

13.

14.

The model should only require inputs based on properties of the project
which are well defined and can be established with a reasonable degree of
certainty at the time the estimate is required.

The model should favor inputs based on objective rather than subjective
criteria.

The model should not be oversensitive to subjective input criteria.

The model should be sensitive to all the parameters of a project which have
been established as having a market effect on the cost, and should not
require input of parameters which do not have a marked effect on cost.

The model should include estimates of how and when the resource will be
needed.

(This is particularly important if the estimates are to be used for resource
allocation, but also important if the results are given in financial terms since
inflation needs to be taken into account.)

The model should produce a range of likely values for the quantity being
estimated.

(It is important to realize that an estimate cannot provide a precise
prediction of the future. It must, of course, predict sufficiently closely to be
useful, and to do this it should ideally be able to place bounds on either side
of the estimate within a stated probability that the actual figures will lie
within the stated bounds.)

The model should include possibilities for sensitivity analysis, so that the
response of the estimates to variation of selected input parameters can be
seen.

The model should include some estimate of the risk of failure to complete
within the estimated time or cost.

TOTAL CHARACTERISTICS INCLUDED

Step 1: Organizing for Testing 205

WORK PAPER 7-4 Factors that Influence Software Cost Estimate

FACTOR | INCLUDED EXCLUDED | COMMENTS

Project-Specific Factors

1. Size of the software

2. Percentage of the design and/or code
that is new

Complexity of the software system
Difficulty of design and coding
Quality
Programming language
Security classification level
Target machine

9. Utilization of the target hardware
10. Requirement volatility
Organization-Dependent Factors

® N LA w

1. Project schedule
2. Personnel
¢ Technical competence
¢ Nontechnical manpower
3. Development environment
e Development machine

¢ Availability of associated software
and hardware

e Software tools and techniques to be
used during design and development

4. Resources not directly attributable to
technical aspects of the project

5. Computing resources
6. Labor rates
7. Inflation

206 Chapter7

WORK PAPER 7-5 Organizing for Testing Quality Control Checklist

YES

NO

N/A

COMMENTS

10.

11.

12.

13.

14.

15.

16.

17.

Has the test team manager been appointed?
Has the test team manager’s role been defined?

Is the scope of testing consistent with the
competency of the test manager?

Is the test team competent?
Are there standards for system documentation?

Are the members of the test team in total
knowledgeable of the intent and content of
those standards?

Are the standards customizable for systems of
various sizes, so that small projects may not
need as extensive documentation as large
projects?

Are the testers provided a complete copy of
system documentation current to the point
where the tests occur?

Have the testers measured the documentation
needs for the project based on the twelve
criteria included in this chapter?

Have the testers determined what documents
must be produced?

Do the project personnel agree with the testers
assessment as to what documents are needed?

Have the testers determined the completeness
of individual documents using the 13 criteria
outlined in Task 3?

Have the testers used the inspection process
to determine the completeness of system
documentation?

Have the testers determined the currentness
of the project documentation at the point of
test?

Have the testers prepared a report that outlines
documentation deficiency?

Do the testers ensure that the documentations
deficiency outlined in their report is acted upon?

Does project management support the
concept of having the test team assess the
development estimate and status?

’

Step 1: Organizing for Testing 207

WORK PAPER 7-5 (continued)

YES

NO

N/A

COMMENTS

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.
34.
35.

If so, is the test team knowledgeable in the
estimation process?

If so, is the test team knowledgeable in the
method that will be used to report project
status?

Does the test team understand how the
software estimate was calculated?

Has the test team performed a reasonable
test to determine the validity of the
estimate?

If the test team disagrees with the validity of the
estimate, will a reasonable process be followed
to resolve that difference?

Does the project team have a reasonable status
reporting system?

Have the testers determined that the project
status system will be utilized on a regular basis?

Is there a process to follow if the status
reporting system indicates that the project
is ahead or behind estimates?

Have the test team taken into account the
influencing factors in evaluating the estimate
(e.g., size of the software and so forth)?

Will the team receive copies of the status
reports?

Is there a process in the test plan to act
upon the status reports when received?

Does the test team have a knowledge of
how projects are planned and how the
content of a project is planned?

Does the test team have an understanding
of the project estimating process used to
estimate this project?

Does the project team have an
understanding of the developmental
process that will be used to build the
software specified in this project?

Is the project plan complete?
Is the project estimate fully documented?
Is the developmental process documented?

Is the estimating method used for this
project reasonable for the project
characteristics?

(continues)

208 Chapter7

WORK PAPER 7-5 (continued)

YES

NO

N/A

COMMENTS

36.

37.

38.

39.
40.

Is the estimate reasonable to complete the
project as specified in the plan?

Has the project been completed using the
development process?

Does the project team have a method for
determining and reporting project status?
Is that project status method used?

Do the testers agree that the project status
as reported is representative of the actual
status?

Step 2: Developing
the Test Plan

The scope of the effort to determine whether software is ready to be placed into pro-
duction should be defined in a test plan. To expend the resources for testing without a
plan will almost certainly lead to waste and the inability to evaluate the status of cor-
rections prior to installation. The test planning effort should follow the normal test plan-
ning process, although the content will vary because it will involve not only in-house
developed software but also vendor-developed software and software embedded into
computer chips.

Overview

The test plan describes how testing will be accomplished. Its creation is essential to
effective testing and should take about one-third of the total testing effort. If you
develop the plan carefully, test execution, analysis, and reporting will flow smoothly.

Consider the test plan as an evolving document. As the developmental effort changes
in scope, the test plan must change accordingly. It is important to keep the test plan cur-
rent and to follow it, for it is the execution of the test plan that management must rely
on to ensure that testing is effective; and it is from this plan that testers will ascertain the
status of the test effort and base opinions on its results.

This chapter contains a standard that defines what to include in the test plan. The
procedures described here are amplified with work papers and checklists detailing
how to develop the planning material. The organizing test described in Chapter 7 will
assist in developing the test plan. Chapters 9 through 13 discuss executing the test plan
and summarizing and reporting the results.

209

210 Chapter 8

Objective

The objective of a test plan is to describe all testing that is to be accomplished, together
with the resources and schedule necessary for completion. The test plan should pro-
vide background information on the software being tested, test objectives and risks,
and specific tests to be performed. Properly constructed, the test plan is a contract
between the testers and the project team/users. Thus, status reports and final reports
will be based on that contract.

Concerns

The concerns testers face in ensuring that the test plan will be complete include the
following;:

m Not enough training. The majority of IT personnel have not been formally
trained in testing, and only about half of full-time independent testing personnel
have been trained in testing techniques. This causes a great deal of misunder-
standing and misapplication of testing techniques.

m Us-versus-them mentality. This common problem arises when developers and
testers are on opposite sides of the testing issue. Often, the political infighting
takes up energy, sidetracks the project, and negatively impacts relationships.

m Lack of testing tools. IT management may consider testing tools to be a luxury.
Manual testing can be an overwhelming task. Although more than just tools are
needed, trying to test effectively without tools is like trying to dig a trench with
a spoon.

m Lack of management understanding/support of testing. If support for testing
does not come from the top, staff will not take the job seriously and testers’
morale will suffer. Management support goes beyond financial provisions;
management must also make the tough calls to deliver the software on time
with defects or take a little longer and do the job right.

m Lack of customer and user involvement. Users and customers may be shut out
of the testing process, or perhaps they don’t want to be involved. Users and
customers play one of the most critical roles in testing: making sure the soft-
ware works from a business perspective.

m Not enough time for testing. This is common complaint. The challenge is to
prioritize the plan to test the right things in the given time.

m Over-reliance on independent testers. Sometimes called the “throw it over the
wall” syndrome. Developers know that independent testers will check their
work, so they focus on coding and let the testers do the testing. Unfortunately,
this results in higher defect levels and longer testing times.

m Rapid change. In some technologies, especially rapid application development
(RAD), the software is created and/or modified faster than the testers can test
it. This highlights the need for automation, but also for version and release
management.

Step 2: Developing the Test Plan

211

m Testers are in a lose-lose situation. On the one hand, if the testers report too
many defects, they are blamed for delaying the project. Conversely, if the
testers do not find the critical defects, they are blamed for poor quality.

m Having to say no. The single toughest dilemma for testers is to have to say,
“No, the software is not ready for production.” Nobody on the project likes to

hear that, and frequently, testers succumb to the pressures of schedule and cost.

Workbench

The workbench in Figure 8-1 shows the six tasks required to complete the test plan.

Project Plan

Project Plan
Assessment and
Status

Figure 8-1

DO

| CHECK

REWORK

Task 1

Profile the
Software
Project

!

Task 2

Understand the
Project Risks

!

Task 3

Select a
Testing
Technique

|

Task 4

Plan
Unit
Testing

!

Task 5

Build the
Test Plan

!

Task 6

Inspect the
Test Plan

I

Workbench for developing a test plan.

Test
Plan

212 Chapter 8

Input

Accurate and complete inputs are critical for developing an effective test plan. The fol-
lowing two inputs are used in developing the test plan:

m Project plan. This plan should address the totality of activities required to
implement the project and control that implementation. The plan should also
include testing.

m Project plan assessment and status report. This report (developed from Step 1
of the seven-step process) evaluates the completeness and reasonableness of
the project plan. It also indicates the status of the plan as well as the method for
reporting status throughout the development effort.

Do Procedures

The following six tasks should be completed during the execution of this step:

Profile the software project.
Understand the software project’s risks.
Select a testing technique.

Plan unit testing and analysis.

Build the test plan.

S S

Inspect the test plan.

Task 1: Profile the Software Project

Effective test planning can occur only when those involved understand the attributes
of the software project being tested. Testers need more information than is normally
contained in a software development plan. Also, because testers should begin the test-
ing process early in the developmental process, the project plan may not be complete
when planning begins.

This task can be divided into the following two subtasks:

1. Conduct a walkthrough of the customer/user areas.

2. Develop a profile of the software project.

Conducting a Walkthrough of the Customer/User Area

Many, including this author, believe that testers work for the customers/users of the
project, particularly if the scope of testing is greater than simply testing against speci-
fications. And because testers represent the customer/users, they should have access
to the users of the system.

Step 2: Developing the Test Plan

213

A walkthrough of the customer/user area is designed for two purposes: to give an
overview of the totality of activities users perform, and to gain an appreciation of the
how the software will be used. For example, if your organization is building a software
system to calculate employee tax deductions, testers should understand the totality of
payroll responsibility so that they can put the tax deductions in the proper perspective
of the overall payroll responsibilities.

Testers can gain an understanding of user responsibilities in two ways. The first is an
orientation to the user area. This orientation should focus on user responsibilities before
data is entered into the software project and the types of processing or uses of software
deliverables during and at the conclusion of the software development process. Second,
they need to follow the major business transactions as they move through the user area.
If possible, it is helpful for testers to sit and observe for several hours activity in the user
areas. By doing so, testers can gain an insight into busy and slack times in the user area,
problems that users have in processing business transactions, and the frequency of
transaction processing events.

Developing a Profile of the Software Project

The primary objective of understanding the business responsibilities of the user(s) is to
develop a profile for the software project. Some of the needed profile information can
be collected by the developmental project team, some can be collected by testers con-
ducting a walkthrough of the user area, and other profile information can be gathered
directly from the user or other stakeholders in the software project.

The following is the profile information that is helpful in preparing for test planning;:

m Project objectives. The test team should understand the high-level project objec-
tives. Without this information, team members may make problematic test deci-
sions. For example, if the user wants a particular screen to be easy to use but
testers are not aware of that objective, they could conduct tests on the screen but
never look at the “easy-to-use” attribute.

m Development process. The type of development process for implementing
software can have a significant impact on the test plan. For example, the
process could be developed in-house or outsourced, and it can be waterfall,
spiral, or agile.

An important component of the development process is the maturity of that
process. Testers can expect much higher defect rates at lower levels of process
maturity than at higher levels.

m Customer/users. Testers need to identify the software’s customers and users.
For example, in an insurance company, the customer might be the organiza-
tional function responsible for writing property damage, whereas the users are
the independent agents who write that type of insurance. If testers know the
needs and competencies of users/customers, they can develop tests to assess
whether the software performs appropriately.

m Project deliverables. Just as it is important to know the deliverables to be pro-
duced by the test team, the testers need to know the deliverables produced by
the project, including both interim and final deliverables. For example, in a

214 Chapter 8

payroll system, an interim deliverable may be the calculation of withholding
tax, whereas a final deliverable would be a paycheck. Just as objectives help
focus the tester on the real needs of the software system, the deliverables focus
the tester on what the system is attempting to accomplish.

m Cost/schedule. Resources for testing should be included in a project’s budget
and schedule. In the preceding walkthrough step, there were tasks for the tester
to validate the project costs and schedule through status reports. For the pro-
file, both the costs and the schedule must be defined in much more detail. The
testers need to know checkpoints, and they need to know how resources will
be allocated.

m Project constraints. Every software project should have a list of constraints, or
conditions that will limit the type of software system produced. For example,
a constraint in the payroll system may be the implementation of a new tax
withholding table. Other constraints include expected turnaround time, vol-
umes of transactions to be processed in a specific time period, skill sets of indi-
viduals entering data, relationships with other organizations, and the number
of staff assigned to the project. These constraints can affect the extensiveness of
testing, as well as conditions that need to be evaluated such as the probability
of implementing a new tax withholding table on January 1 with existing devel-
opmental staff.

m Developmental staff competency. The testers need to know the competency of
the developmental staff. For example, with a relatively new and inexperienced
staff, the testers might expect a much higher defect rate than with a very expe-
rienced staff.

m Legal/industry issues. Software projects need to comply with governmental
laws and industry standards and guidelines. For example, when building
patient systems in hospitals, developers should be aware of laws such as
HIPPA (the Health Insurance Portability and Accountability Act of 1996),
as well as guidelines issued by leading hospital associations.

m Implementation technology. Systems developed using proven technologies
tend to have fewer defect rates than systems built using cutting-edge technol-
ogy. For example, systems built around wireless technology may have to pio-
neer the use and control of that technology. On the other hand, building batch
systems has been perfected over years and testers should have confidence that
batch systems developed today will have minimal problems in development.

m Databases built/used. Testers need to know the types of databases that will be
used by the software system. These databases can be built specifically for that
system or they can be existing databases. In establishing a software-testing
environment, the testers will have to use controlled versions of databases or
create equivalent databases for test purposes.

m Interfaces to other systems. The more systems interfaced by the system being
tested, the greater the test effort. Testers must ensure that proper coordination
exists among all the systems affected by the software being developed. Testers
should develop an inventory of systems directly interfaced as well as systems

Step 2: Developing the Test Plan

215

that will use the data but may not be directly interfaced. For example, if the
system being tested creates a database that is used by many individuals on
their own PCs, there may be issues with accounting cut-offs, which, if not con-
trolled, would enable users to produce accounting information different than
that produced by the software system that created the database.

m Project statistics. Testers should attempt to gather as many statistics about the
software system being developed as practical. For example, knowing the num-
ber of transactions, the periods in which those transactions exist, the number
of users on the system, as well as any historical data on the application (such
as problems encountered, downtime occurring, customer complaints, and so
forth) will help testers develop appropriate test data.

Task 2: Understand the Project Risks

The test factors describe the broad objectives of testing. These are the risks/concerns
that testers need to evaluate to ensure the objectives identified by that factor have been
achieved. The following discussion (and Figure 8-2) delineates the type of system char-
acteristics that testers should evaluate to determine whether test factors have been met.
(Note: Testers should customize these factors for their specific system.)

m Reliability

m The level of accuracy and completeness expected in the operational envi-
ronment is established.

m Data integrity controls are implemented in accordance with the design.

m Manual, regression, and functional tests are performed to ensure the data
integrity controls work.

m The completeness of the system installation is verified.
m The accuracy requirements are maintained as the applications are updated.

m Authorization

The rules governing the authorization of transactions are defined.
The application is designed to identify and enforce the authorization rules.

The application implements the authorization rules.

Unauthorized data changes are prohibited during the installation process.
m The method and rules for authorization are preserved during maintenance.
m File integrity
m Requirements for file integrity are defined.
The design provides for the controls to ensure the integrity of the file.
The specified file integrity controls are implemented.

The file integrity functions are tested to ensure they perform properly.

The integrity of the files is preserved during the maintenance phase.

216 Chapter 8

m Audit trail

The requirements to reconstruct processing are defined.

The audit trail requirements are incorporated into the system.

The audit trail functions are tested to ensure the appropriate data is saved.
The audit trail of installation events is recorded.

The audit trail requirements are updated during systems maintenance.

m Continuity-of-processing

The impact of each system failure is defined.
The contingency plan and procedures have been written.
Recovery testing verifies that the contingency plan functions properly.

The integrity of the previous systems is ensured until the integrity of the
new system is verified.

The contingency plan is updated and tested as system requirements change.

m Service level

The desired service level for all aspects of the system is defined.

The method to achieve the predefined service levels is incorporated into the
system design.

The programs and manual systems are designed to achieve the specified
service level.

Stress testing is conducted to ensure that the system can achieve the desired
service level when both normal and above normal volumes of data are
processed.

A fail-safe plan is used during installation to ensure service is not disrupted.

The predefined service level is preserved as the system is maintained.

m Access control

Access to the system is defined.
The procedures to enforce the access rules are designed.
The defined security procedures are implemented.

Compliance tests are utilized to ensure that the security procedures func-
tion in a production environment.

Access to the computer resources is controlled during installation.

The procedures controlling access are preserved as the system is updated.

m Methodology

The system requirements are defined and documented in compliance with
the development methodology.

The system design is executed in accordance with the design methodology.

Step 2: Developing the Test Plan

217

The programs are constructed and documented in compliance with the pro-
gramming methodology.

Testing is performed in compliance with the test methodology.

The integration of the application system in a production environment com-
plies with the installation methodology.

System maintenance is performed in compliance with the maintenance
methodology.

m Correctness

m The user has fully defined the functional specifications.

The developed design conforms to the user requirements.

The developed program conforms to the system design specifications.
Functional testing ensures that the requirements are properly implemented.
The proper programs and data are placed into production.

The user-defined requirement changes are properly implemented in the
operational system.

m Ease-of-use

The usability specifications for the application system are defined.

The system design attempts to optimize the usability of the implemented
requirements.

The program optimizes ease of use by conforming to the design.

The relationship between the manual and automated system is tested to
ensure the application is easy to use.

The usability instructions are properly prepared and disseminated to the
appropriate individuals.

As the system is maintained, its ease of use is preserved.

m Maintainable

The desired level of maintainability is specified.
The design is developed to achieve the desired level of maintainability.

The program is coded and designed to achieve the desired level of
maintainability.

The system is inspected to ensure that it is maintainable.
The system documentation is complete.

Maintainability is preserved as the system is updated.

m Portable

The portability in moving the system among hardware or software compo-
nents is determined.

218 Chapter 8

m The design is prepared to achieve the desired level of portability.

m The program is designed and implemented to conform to the portability
design.

m The system is subjected to a disaster test to ensure that it is portable.

m The documentation is complete to facilitate portability.

m Portability is preserved as the system is maintained.

m Coupling

m The interface between the system being developed and related systems is
defined.

m The design takes into account the interface requirements.

m The program conforms to the interface design specifications.

m Functional and regression testing are performed to ensure that the interface
between systems functions properly.

m The interface between systems is coordinated prior to the new system being
placed into production.

m The interface between systems is preserved during the systems mainte-

nance process.

m Performance

The performance criteria are established.

The design specifications ensure that the desired level of performance is
achieved.

The program is designed and implemented to achieve the performance
criteria.

The system is compliance tested to ensure that the desired performance
levels are achieved.

System performance is monitored during the installation phase.

The desired level of performance is preserved during system maintenance.

m Ease-of-operation

The operational needs are incorporated into the system design.

The operational procedures are tested to ensure they achieve the desired
level of operational usability.

The operating procedures are implemented during the installation phase.

Changes to the operational system are updated in the operating procedures.

The test team should investigate the system characteristics to evaluate the potential
magnitude of the risk, as follows:

1. Define what meeting project objectives means. These are the objectives to be
accomplished by the project team.

TEST FACTOR REQUIREMENTS DESIGN PROGRAM TEST OPERATION MAINTENANCE
Reliability Tolerances Data integrity Data integrity Manual, Accuracy and Update accuracy
established controls designed controls regression, and completeness of requirements
implemented functional testing installation
verified
Authorization Authorization Authorization Authorization Compliance Data changes Preserve
rules defined rules designed rules testing during installation authorization
implemented prohibited rules
File Integrity File integrity File integrity File integrity Functional testing Integrity of Preserve file
requirements controls controls production integrity
defined designed implemented files verified
Audit Trail Reconstruction Audit trail Implement audit Functional testing Installation Update audit trail
requirements designed trail audit trail
defined recorded
Continuity of Impact of failure ~ Contingency plan ~ Write contingency Recovery testing Integrity Update
Processing defined designed plan and of previous contingency plan
procedures testing ensured
Service Level Desired service Method to Design system to Stress testing Fail-safe Preserve service
level defined achieve service achieve service installation level
level designed level plan
implemented
Access Access defined Access procedure Implement Compliance Access during Preserve security
Control designed security testing integration
procedures controlled
Methodology Requirements Design complies Programs comply Compliance Integration Maintenance
comply with with methodology with testing complies with complies with
methodology methodology methodology methodology

Figure 8.2 Testing concerns matrix.

(continues)

TEST FACTOR REQUIREMENTS DESIGN PROGRAM TEST OPERATION MAINTENANCE

Correctness Functional Design conforms ~ Programs Functional Proper Update
specifications to requirements conform to testing programs and requirements
designed design data placed

into production

Ease of use Usability Design facilitates ~ Programs Manual support Usability Preserve ease of
specifications use conform to testing instructions use
determined design disseminated

Maintainable Maintenance Design is Programs are Inspection Documentation Preserve
specifications maintainable maintainable completed maintainability
determined

Portable Portability needs Design is portable Programs Disaster testing Documentation Preserve
determined conform to completed portability

design

Coupling Systems interface Interface design Programs Functional and Interface Ensure proper

defined complete conform to regression testing coordinated interface
design

Performance Performance Design achieves Programs Compliance Integration Preserve level of
criteria criteria achieve testing performance performance
established criteria monitored

Ease of Operational Communicate Develop Operations Operating Update operating

operation needs defined needs to operating testing procedures procedures

operations procedures implemented

Figure 8.2 (continued)

Step 2: Developing the Test Plan

221

. Understand the core business areas and processes. All information systems
are not created equal. Systems that support mission-critical business processes
are clearly more important than systems that support mission-support func-
tions (usually administrative), although these, too, are necessary functions. A
focus on core business areas and processes is essential to the task of assessing
the impact of the problem on the enterprise and for establishing priorities.

. Assess the severity of potential failures. This step must be performed for each
core business area and its associated processes.

. Identify the system components:

m Links to core business areas or processes

m Platforms, languages, and database management systems

m QOperating system software and utilities

m Telecommunications

m Internal and external interfaces

= Owners

m Availability and adequacy of source code and associated documentation

. Identify, prioritize, and estimate the test resources required. Achieving test
objectives requires significant investment in two vital resources: money and
people. Accordingly, the organization has to make informed choices about
priorities by assessing the costs, benefits, and risks of competing projects. In
some instances, it may be necessary to defer or cancel new system develop-
ment efforts and reprogram the freed resources to achieve and test a project.

. Develop validation strategies and testing plans for all converted or replaced
systems and their components. The testing and validation of converted or
replaced systems require a phased approach. Consider the specific objectives
for the following phases:

m Phase 1, unit testing. This phase focuses on functional and compliance test-
ing of a single application or software module.

m Phase 2, integration testing. This phase tests the integration of related soft-
ware modules and applications.

m Phase 3, system testing. This phase tests all the integrated components of a
system.

m Phase 4, acceptance testing. This phase tests that the system will function
with live, operational data.

. Identify and acquire automated test tools and write test scripts. Regardless
of the strategy selected, the scope of the testing and validation effort requires
careful planning and use of automated tools, including test case analyzers and
test data libraries.

222 Chapter 8

8. Define requirements for the test facility. Organizations should operate in an
adequate testing environment to avoid potential contamination or interference
with the operation of production systems.

9. Address implementation schedule issues. This step includes:
m Selecting conversion facilities
m Determining the time needed to put converted systems into production
m Converting backup and archival data

10. Address interface and data exchange issues. The test team should consider the
following issues when conducting this step:

m Development of a model showing the internal and external dependency
links among enterprise core business areas, processes, and information
systems

Notification of all outside data exchange entities
Data bridges and filters

Contingency plans if no data is received from an external source

The validation process for incoming external data
m Contingency plans for invalid data

11. Evaluate contingency plans. These should be realistic contingency plans,
including the development and activation of manual or contract procedures to
ensure the continuity of core business processes.

12. Identify vulnerable parts of the system and processes operating outside the
information resource management area. This includes telephone and network
switching equipment and building infrastructure systems. Testers should
develop a separate plan for their testing.

Task 3: Select a Testing Technique

Testing techniques should be selected based on their ability to accomplish test objec-
tives. The technique selection process begins with selecting the test factor. Once the fac-
tor has been selected, testers know in which life cycle phase the technique will be
utilized.

Both structural and functional testing can be accomplished using a predetermined
set of techniques. Once the technique has been selected, the test method for imple-
menting that technique needs to be determined. The test method can be either dynamic
or static. Dynamic techniques attempt to determine whether the system functions
properly while the programs are being operated, and static testing looks at the system
in a non-operating environment.

The following describes the generic techniques testers can use for structural and
functional testing.

Step 2: Developing the Test Plan

223

Structural System Testing Techniques

The objective of structural testing is to ensure that the system is structurally sound. It
attempts to determine that the technology has been used properly and that when all the
component parts are assembled they function as a cohesive unit. The techniques are not
designed to ensure that the application system is functionally correct but rather that it is
structurally sound. The following techniques are briefly described in Figure 8-3 and

then individually explained:

m Stress testing

m [Execution testing
m Recovery testing
m QOperations testing
m Compliance testing
= Security testing
TECHNIQUE DESCRIPTION EXAMPLE
Stress System performs « Sufficient disk space
with expected volumes allocated
» Communication lines
adequate
Execution System achieves desired level « Transaction turnaround time
of proficiency adequate
« Software/hardware use
optimized
Recovery System can be returned to an * Induce failure
operational status after a
failure * Evaluate adequacy of backup
data
Operations System can be executed in a + Determine systems can run
normal operational status using documention
+ JCL adequate
Compliance System is developed in + Standards followed
accordance with standards .
and procedures + Documentation complete
Security System is protected in ¢ Access denied
accordance with importance to d .
organization Procedures in place

Figure 8-3 Structural testing techniques.

224 Chapter 8

Stress Testing

Stress testing is designed to determine whether the system can function when subjected
to larger volumes than normally would be expected. Areas stressed include input trans-
actions, internal tables, disk space, output, communications, and computer capacity. If
the application functions adequately under stress testing, testers can assume that it will
function properly with normal volumes of work.

Objectives

Specific objectives of stress testing include

m Normal or above-normal volumes of transactions can be processed within the
expected time frame.

m System capacity, including communication lines, has sufficient resources to
meet expected turnaround times.

m Users can perform their assigned tasks and maintain the desired turnaround
time.

How to Use Stress Testing

Stress testing should simulate the production environment as closely as possible.
Online systems should be stress tested by having people enter transactions at a normal
or above-normal pace. Batch systems can be stress tested with large input batches. Error
conditions should be included in tested transactions. Transactions for use in stress test-
ing can be obtained from one of the following three sources:

Test data generators
Test transactions created by the test group

Transactions previously processed in the production environment

In stress testing, the system should be run as it would in the production environment.
Operators should use standard documentation, and the people entering transactions or
working with the system should be the clerical personnel that will work with the sys-
tem after it goes into production. Online systems should be tested for an extended
period of time, and batch systems tested using more than one batch of transactions.

When to Use Stress Testing

Stress testing should be used when there is uncertainty regarding the volume of work
the application system can handle without failing. Stress testing is most common with
online applications because it is difficult to simulate heavy-volume transactions using
the other testing techniques. The disadvantage of stress testing is the amount of time it
takes to prepare for the test, as well as the number of resources consumed during the
execution of the test. Testers should weigh these costs against the risk of not identify-
ing volume-related failures until the application is placed into an operational mode.

Step 2: Developing the Test Plan

225

Execution Testing

Execution testing is designed to determine whether the system achieves the desired
level of proficiency in a production status. Execution testing can verify response and
turnaround times, as well as design performance. The execution of a system can be
tested in whole or in part, using the actual system or a simulated model.

Objectives

Specific objectives of execution testing include:

m Determining the performance of the system structure
m Verifying the optimum use of hardware and software
m Determining response time to online requests
-

Determining transaction processing turnaround time

How to Use Execution Testing

Testers can conduct execution testing in any phase of the system development life
cycle. The testing can evaluate a single aspect of the system—for example, a critical
routine in the system—or the ability of the proposed structure to satisfy performance
criteria. Execution testing can be performed in any of the following manners:

m Using hardware and software monitors
m Using a simulation model

m Creating a quick and dirty program(s) to evaluate the approximate perfor-
mance of a completed system

The earlier the technique is used, the greater the likelihood that the completed appli-
cation will meet the performance criteria.

When to Use Execution Testing

Execution testing should be used early in the development process. Although there is
value in knowing that the completed application does not meet performance criteria, if
that assessment is not known until the system is operational, it may be too late or too
costly to make the necessary modifications. Therefore, execution testing should be used
at that point in time when the results can be used to affect or change the system structure.

Recovery Testing

Recovery is the ability to restart operations after the integrity of the application has been
lost. The process normally involves reverting to a point where the integrity of the sys-
tem is known, and then reprocessing transactions up until the point of failure. The time
required to recover operations is affected by the number of restart points, the volume
of applications run on the computer center, the training and skill of the people con-
ducting the recovery operation, and the tools available. The importance of recovery
will vary from application to application.

226

Chapter 8

Obijectives
Recovery testing is used to ensure that operations can be continued after a disaster.
Recovery testing not only verifies the recovery process, but also the effectiveness of
the component parts of that process. Specific objectives of recovery testing include the
following;:

m Adequate backup data is preserved.
Backup data is stored in a secure location.

Recovery procedures are documented.

Recovery personnel have been assigned and trained.

Recovery tools have been developed.

How to Use Recovery Testing

Testers should conduct recovery testing in two modes. First, they should assess the
procedures, methods, tools, and techniques. Then, after the system has been devel-
oped, they should introduce a failure into the system and test the ability to recover.

Evaluating the procedures and documentation is a process that primarily calls for
judgment and checklists. The actual recovery test may involve off-site facilities and
alternate processing locations. Normally, procedural testing is conducted by skilled
systems analysts, professional testers, or management personnel. Testing the actual
recovery procedures should be performed by computer operators and other clerical
personnel who would, in fact, be involved had it been an actual disaster instead of a
test disaster.

A simulated disaster is usually performed on one aspect of the application system.
For example, the test may be designed to determine whether people using the system
can continue processing and recover computer operations after computer operations
cease. While several aspects of recovery need to be tested, it is better to test one seg-
ment at a time rather than induce multiple failures at a single time. When multiple fail-
ures are induced, it may be more difficult to pinpoint the cause of the problem than
when only a single failure is induced.

It is preferable not to advise system participants when a disaster test will be con-
ducted. When people are prepared, they may perform the recovery test in a manner
different from the performance when it occurs at an unexpected time. Even if the
participants know that recovery may be part of the test, I recommend that you don’t
let them know specifically when the test will occur or what type of recovery will be
necessary.

When to Use Recovery Testing

Recovery testing should be performed whenever the user of the application states that
the continuity of operation is essential to the proper functioning of the user area. The
user should estimate the potential loss associated with inability to recover operations
over various time spans—for example, the inability to recover within five minutes, one
hour, eight hours, and one week. The potential loss should determine both the amount
of resources to be devoted to disaster planning as well as recovery testing.

Step 2: Developing the Test Plan

227

Operations Testing

After an application has been tested, it is integrated into the operating environment. At
this point, the application will be executed using the normal operations staff, proce-
dures, and documentation. Operations testing is designed to verify prior to production
that the operating procedures and staff can properly execute the application.

Objectives

Specific objectives of operations testing include

m Determining the completeness of computer operator documentation

m Ensuring that the necessary support mechanisms, such as job control language,
have been prepared and function properly

m Evaluating the completeness of operator training

How to Use Operations Testing

Operations testing evaluates both the process and the execution of the process. During
the requirements phase, operational requirements can be evaluated to determine their
reasonableness and completeness. During the design phase, the operating procedures
should be designed and evaluated.

The execution of operations testing can normally be performed in conjunction with
other tests. However, if operations testing is included, the operators should not be
prompted or helped by outside parties. The test needs to be executed as though it were
part of normal computer operations so that it adequately evaluates the system’s effec-
tiveness in an operational environment.

When to Use Operations Testing

Operations testing should occur prior to placing any application into a production sta-
tus. If the application is to be tested in a production-type setting, operations testing can
piggyback that process at a very minimal cost.

Compliance Testing

Compliance testing verifies that the application was developed in accordance with IT
standards, procedures, and guidelines. The methodologies are used to increase the
probability of success, to enable the transfer of people in and out of the project with
minimal cost, and to increase the maintainability of the application system.

Objectives

Specific objectives of compliance testing include the following;:

m Determining that systems development and maintenance methodologies are
followed

m Ensuring compliance to departmental standards, procedures, and guidelines

m Evaluating the completeness and reasonableness of system documentation

228

Chapter 8

How to Use Compliance Testing

Compliance testing requires that the prepared document/program be compared to
organizational standards. The most effective method for compliance testing is the
inspection process.

When to Use Compliance Testing

The type of testing conducted varies based on the phase of the development life cycle.
However, it may be more important to test adherence to the process during the require-
ments phase than at later stages because it is difficult to correct applications when
requirements are not adequately documented.

Security Testing

The level of security required depends on the risks associated with compromise or loss
of information. Security testing is designed to evaluate the adequacy of protective pro-
cedures and countermeasures.

Obijectives

Specific objectives of security testing include the following:

m Determining that adequate attention has been devoted to identifying security
risks

m Determining that a realistic definition and enforcement of access to the system
has been implemented

m Determining that sufficient expertise exists to perform adequate security testing

m Conducting reasonable tests to ensure that the implemented security measures
function properly

How to Use Security Testing

Security testing is a highly specialized part of the test process. Most organizations can
evaluate the reasonableness of security procedures to prevent the average perpetrator
from penetrating the application. However, the highly skilled perpetrator using
sophisticated techniques may use methods undetectable by novices designing security
measures and/or testing those measures.

The first step is to identify the security risks and the potential loss associated with
those risks. If either the loss is low or the penetration method routine, IT personnel can
conduct the necessary tests. On the other hand, if either the risks are very high or the
technology that might be used is sophisticated, specialized help should be acquired in
conducting the security tests.

When to Use Security Testing

Security testing should be used when the information and/or assets protected by the
application system are of significant value to the organization. The testing should be per-
formed both before and after the system goes into an operational status. The extent of test-
ing depends on the security risks, and the individual assigned to conduct the test should
be selected based on the estimated sophistication that might be used to penetrate security.

Step 2: Developing the Test Plan 229

Functional System Testing Techniques

Functional system testing is designed to ensure that the system requirements and spec-
ifications are achieved. The process normally involves creating test conditions to eval-
uate the correctness of the application. The following techniques are briefly described
in Figure 8-4 and then individually explained:

Requirements testing
Regression testing
Error-handling testing
Manual-support testing
Intersystems testing

Control testing

Parallel testing
TECHNIQUE DESCRIPTION EXAMPLE
Requirements System performs as * Prove system requirements
specified
» Compliance to policies, regulations
regulations
Regression Verifies that anything » Unchanged system segments
unchanged still function
erforms correctl
P Y + Unchanged manual procedures
correct
Error Errors can be prevented + Error introduced into test
Handling or detected, and then
corrected « Errors reentered
Manual The people-computer * Manual procedures developed
support interaction works

* People trained

Intersystems Data is correctly passed + Intersystem parameters changed

from system to system .
Y Y * Intersystem documentation updated

Control Controls reduce system « File reconciliation procedures work
risk to an acceptable)
level » Manual controls in place

Parallel 0ld system and new + 0ld and new system can reconcile
system are run and the
results compared to
detect unplanned
differences

+ Operational status of old
system maintained

Figure 8-4 Functional testing techniques.

230 Chapter 8

Requirements Testing

Requirements testing must verify that the system can perform correctly over a contin-
uous period of time. The system can be tested throughout the life cycle, but it is diffi-
cult to test the reliability before the program becomes operational.

Objectives

Specific objectives of requirements testing include the following:

m User requirements are implemented.
m (Correctness is maintained over extended processing periods.
m Application processing complies with the organization’s policies and procedures.
m Secondary user needs have been included, such as:
= Security officer
m Database administrator
m Internal auditors
m Comptroller
m The system processes accounting information in accordance with procedures.

m Systems process information in accordance with governmental regulations.

How to Use Requirements Testing

Requirements testing is primarily performed through the creation of test conditions
and functional checklists. Test conditions are generalized during the requirements
phase, and become more specific as the life cycle progresses.

Functional testing is more effective when the test conditions are created directly
from user requirements. When test conditions are created from the system documenta-
tion, defects in that documentation will not be detected through testing. When the test
conditions are created from other than the system documentation, defects introduced
into the documentation will be detected.

When to Use Requirements Testing

The process should begin in the requirements phase and continue through every phase
of the life cycle. It is not a question as to whether requirements must be tested but, rather,
the extent and methods used.

Regression Testing

One of the attributes that has plagued IT professionals for years is the cascading effect
of making changes to an application system. One segment of the system is developed
and thoroughly tested, and then a change is made to another part of the system, which
has a disastrous effect on the tested portion. Regression testing retests previously tested
segments to ensure that they still function properly after a change has been made to
another part of the application.

Step 2: Developing the Test Plan 231

Obijectives

Specific objectives of regression testing include the following;:

m Determining that system documentation remains current
m Determining that system test data and conditions remain current

m Determining that previously tested system functions perform properly after
changes are introduced

How to Use Regression Testing

Regression testing is retesting unchanged segments of the application system. It nor-
mally involves rerunning tests that have been previously executed to ensure that the
same results can be achieved. While the process is simple in that the test transactions
have been prepared and the results known, unless the process is automated it can be a
very time-consuming and tedious operation. It is also one in which the cost/benefit
needs to be carefully evaluated or large amounts of effort can be expended with mini-
mal payback.

When to Use Regression Testing

Regression testing should be used when there is a high risk that new changes may affect
unchanged areas of the application system. In the developmental process, regression
testing should occur after a predetermined number of changes are incorporated into the
application system. In the maintenance phase, regression testing should be conducted if
the potential loss that could occur due to affecting an unchanged portion is very high.
The determination as to whether to conduct regression testing should be based on the
significance of the loss that could occur as a result of improperly tested applications.

Error-Handling Testing

One of the characteristics that differentiate automated from manual systems is the pre-
determined error-handling feature. Manual systems can deal with problems as they
occur, but automated systems must preprogram error handling. In many instances, the
completeness of error handling affects the usability of the application. Error-handling
testing determines the ability of the application system to properly process incorrect
transactions.

Objectives

Specific objectives of error-handling testing include:

m Determining that all reasonably expected error conditions are recognizable by
the application system

m Determining that the accountability for processing errors has been assigned and
that the procedures provide a high probability that the error will be corrected

m Determining that reasonable control is maintained during the correction
process

232

Chapter 8

How to Use Error-Handling Testing

Error-handling testing requires a group of knowledgeable people to anticipate what
can go wrong with the application system. Most other forms of testing involve verify-
ing that the application system conforms to requirements. Error-handling testing uses
exactly the opposite concept.

A successful method for developing error conditions is to have IT staff, users, and
auditors brainstorm what might go wrong with the application. The totality of their
thinking must then be organized by application function so that a logical set of test
transactions can be created. Without this type of synergistic interaction, it is difficult to
develop a realistic body of problems prior to production.

Error-handling testing should test the introduction of the error, the processing of the
error, the control condition, and the reentry of the condition properly corrected.

When to Use Error-Handling Testing

Error testing should occur throughout the system development life cycle. At all points
in the developmental process the impact from errors should be identified and appro-
priate action taken to reduce those errors to an acceptable level. Error-handling testing
assists in the error management process of systems development and maintenance.
Some organizations use auditors, quality assurance, or professional testing personnel
to evaluate error processing.

Manual-Support Testing

The manual part of the system requires the same attention to testing as does the auto-
mated segment. Although the timing and testing methods may differ, the objectives of
manual testing remain the same as testing the automated segment of the system.

Obijectives

Specific objectives of manual-support testing include the following;:

m Verifying that the manual-support procedures are documented and complete
m Determining that manual-support responsibility has been assigned

m Determining that the manual-support personnel are adequately trained

|

Determining that the manual support and the automated segment are properly
interfaced

How to Use Manual-Support Testing

Manual testing involves first the evaluation of the adequacy of the process, and sec-
ond, the execution of the process. The process itself can be evaluated in all phases of
the development life cycle. Rather than preparing and entering test transactions them-
selves, testers can have the actual clerical and supervisory people prepare, enter, and
use the results of processing from the application system.

Manual-support testing normally involves several iterations of the process. Testing
people processing requires testing the interface between people and the application sys-
tem. This means entering transactions, getting the results back from that processing,

Step 2: Developing the Test Plan

233

and taking additional action based on the information received, until all aspects of the
manual computer interface have been adequately tested.

Manual-support testing should occur without the assistance of the systems person-
nel. The manual-support group should operate using the training and procedures pro-
vided them by the systems personnel. However, the results should be evaluated by the
systems personnel to determine if they have been adequately performed.

When to Use Manual-Support Testing

Although manual-support testing should be conducted throughout the development
life cycle, extensive manual-support testing is best done during the installation phase so
that clerical personnel do not become involved with the new system until immediately
prior to its entry into operation. This avoids the confusion of knowing two systems and
not being certain which rules to follow. During the maintenance and operation phases,
manual-support testing may involve only providing people with instructions on the
changes and then verifying that they understand the new procedures.

Intersystem Testing

Application systems are frequently interconnected to other application systems. The
interconnection may be data coming into the system from another application, leaving
for another application, or both. Frequently, multiple applications—sometimes called
cycles or functions—are involved. For example, there could be a revenue cycle that
interconnects all the income-producing applications, such as order entry, billing,
receivables, shipping, and returned goods. Intersystem testing is designed to ensure
that the interconnection between applications functions correctly.

Objectives
Specific objectives of intersystem testing include the following:

m Determining that the proper parameters and data are correctly passed between
applications

m Ensuring that proper coordination and timing of functions exists between the
application systems

m Determining that the documentation for the involved systems is accurate and
complete

How to Use Intersystem Testing

One of the best testing tools for intersystem testing is the integrated test facility. This
permits testing to occur in a production environment and thus the coupling of systems
can be tested at minimal cost.

When to Use Intersystem Testing

Intersystem testing should be conducted whenever there is a change in parameters
between application systems. The extent and type of testing will depend on the risk
associated with those parameters being erroneous. If the integrated test facility concept
is used, the intersystem parameters can be verified after the changed or new applica-
tion is placed into production.

234 Chapter 8

Control Testing

Approximately one-half of the total system development effort is directly attributable
to controls. Controls include data validation, file integrity, audit trails, backup and
recovery, documentation, and the other aspects of systems related to integrity. Control
testing is designed to ensure that the mechanisms that oversee the proper functioning
of an application system work.

Objectives

Specific objectives of control testing include the following:
m Accurate and complete data

Authorized transactions

Maintenance of an adequate audit trail of information

Efficient, effective, and economical process

Process meeting the needs of the user

How to Use Control Testing

The term “system of internal controls” is frequently used in accounting literature to
describe the totality of the mechanisms that ensure the integrity of processing. Controls
are designed to reduce risks; therefore, to test controls, the risks must be identified.

One method for testing controls is to develop a risk matrix. The matrix identifies the
risks, the controls, and the segment within the application system in which the controls
reside.

When to Use Control Testing

Control testing should be an integral part of system testing. Controls must be viewed
as a system within a system, and tested in parallel with other systems tests. Because
approximately 50 percent of the total development effort goes into controls, a propor-
tionate part of testing should be allocated to evaluating the adequacy of controls.

Parallel Testing

In the early days of computer systems, parallel testing was one of the more popular
testing techniques. However, as systems become more integrated and complex, the
difficulty in conducting parallel tests increased and thus the popularity of the tech-
nique diminished. Parallel testing is used to determine that the results of the new
application are consistent with the processing of the previous application or version of
the application.

Objectives
Specific objectives of parallel testing include the following;:
m Conducting redundant processing to ensure that the new application performs
correctly

m Demonstrating consistency and inconsistency between two versions of the
same application system

Step 2: Developing the Test Plan

235

How to Use Parallel Testing

Parallel testing requires that the same input data be run through two versions of the
same application. Parallel testing can be done with the entire application or with a seg-
ment of the application. Sometimes a particular segment, such as the day-to-day inter-
est calculation on a savings account, is so complex and important that an effective
method of testing is to run the new logic in parallel with the old logic.

If the new application changes data formats, the input data will have to be modified
before it can be run through the new application. The more difficulty encountered in
verifying results or preparing common input, the less attractive the parallel testing
technique becomes.

When to Use Parallel Testing

Parallel testing should be used when there is uncertainty regarding the correctness of
processing of the new application, and the old and new versions of the application are
similar. For example, in payroll, banking, and other financial applications where the
results of processing are similar, even though the methods may change significantly—
for example, going from batch to online banking—parallel testing is one of the more
effective methods of ensuring the integrity of the new application.

Task 4: Plan Unit Testing and Analysis

This section examines the techniques, assessment, and management of unit testing and
analysis. The strategies are categorized as functional, structural, or error-oriented.
Mastery of the material in this section assists the software engineer to define, conduct,
and evaluate unit tests and analyses and to assess new unit testing techniques.

Unit testing and analysis are the most practiced means of verifying that a program
possesses the features required by its specification. Testing is a dynamic approach to
verification in which code is executed with test data to assess the presence (or absence)
of required features. Analysis is a static approach to verification in which required fea-
tures are detected by analyzing, but not executing, the code. Many analysis techniques,
such as proof of correctness, safety analysis, and the more open-ended analysis proce-
dures represented by code inspections and reviews, have become established tech-
nologies with their own substantial literature. These techniques are not discussed in
this section.

This section focuses on unit-level verification. What constitutes a “unit” has been
left imprecise; it may be as little as a single statement or as much as a set of coupled
subroutines. The essential characteristic of a unit is that it can meaningfully be treated
as a whole. Some of the techniques presented here require associated documentation
that states the desired features of the unit. This documentation may be a comment in
the source program, a specification written in a formal language, or a general state-
ment of requirements. Unless otherwise indicated, this documentation should not be
assumed to be the particular document in the software life cycle called a “software
specification,” “software requirements definition,” or the like. Any document contain-
ing information about the unit may provide useful information for testing or analysis.

236

Chapter 8

Functional Testing and Analysis

Functional testing and analysis ensure that major characteristics of the code are covered.

Functional Analysis

Functional analysis seeks to verify, without execution, that the code faithfully imple-
ments the specification. Various approaches are possible. In the proof-of-correctness
approach, a formal proof is constructed to verify that a program correctly implements
its intended function. In the safety-analysis approach, potentially dangerous behavior
is identified and steps are taken to ensure such behavior is never manifested. Func-
tional analysis is mentioned here for completeness, but a discussion of it is outside the
scope of this section.

Functional Testing

Unit testing is functional when test data is developed from documents that specify a
module’s intended behavior. These documents include, but are not limited to, the actual
specification and the high- and low-level design of the code to be tested. The goal is to
test for each software feature of the specified behavior, including the input domains, the
output domains, categories of inputs that should receive equivalent processing, and the
processing functions themselves.

Testing Independent of the Specification Technique

Specifications detail the assumptions that may be made about a given software unit.
They must describe the interface through which access to the unit is given, as well as
the behavior once such access is given. The interface of a unit includes the features of
its inputs, its outputs, and their related value spaces (called domains). The behavior of
a module always includes the function(s) to be computed (its semantics), and some-
times the runtime characteristics, such as its space and time complexity.

Functional testing can be based either on the interface of a module or on the function
to be completed.

m Testing based on the interface. Testing based on the interface of a module
selects test data based on the features of the input and output domains of the
module and their interrelationships.

m Input domain testing. In external testing, test data is chosen to cover the
extremes of the input domain. Similarly, midrange testing selects data
from the interiors of domains. The motivation is inductive—it is hoped
that conclusions about the entire input domain can be drawn from the
behavior elicited by some of its representative members. For structured
input domains, combinations of extreme points for each component are
chosen. This procedure can generate a large quantity of data, although con-
siderations of the inherent relationships among components can ameliorate
this problem somewhat.

m Equivalence partitioning. Specifications frequently partition the set of all
possible inputs into classes that receive equivalent treatment. Such parti-
tioning is called equivalence partitioning. A result of equivalence partitioning

Step 2: Developing the Test Plan

237

is the identification of a finite set of functions and their associated input and
output domains. Input constraints and error conditions can also result from
this partitioning. Once these partitions have been developed, both external
and midrange testing are applicable to the resulting input domains.

m Syntax checking. Every robust program must parse its input and handle
incorrectly formatted data. Verifying this feature is called syntax checking.
One means of accomplishing this is to execute the program using a broad
spectrum of test data. By describing the data with documentation language,
instances of the input language can be generated using algorithms from
automata theory.

m Testing based on the function to be computed. Equivalence partitioning
results in the identification of a finite set of functions and their associated input
and output domains. Test data can be developed based on the known charac-
teristics of these functions. Consider, for example, a function to be computed
that has fixed points (that is, certain of its input values are mapped into them-
selves by the function). Testing the computation at these fixed points is possi-
ble, even in the absence of a complete specification. Knowledge of the function
is essential in order to ensure adequate coverage of the output domains.

m Special-value testing. Selecting test data on the basis of features of the func-
tion to be computed is called special-value testing. This procedure is particu-
larly applicable to mathematical computations. Properties of the function to
be computed can aid in selecting points that will indicate the accuracy of the
computed solution.

m Output domain coverage. For each function determined by equivalence
partitioning there is an associated output domain. Output domain coverage
is performed by selecting points that will cause the extremes of each of
the output domains to be achieved. This ensures that modules have been
checked for maximum and minimum output conditions and that all cate-
gories of error messages have, if possible, been produced. In general, con-
structing such test data requires knowledge of the function to be computed
and, hence, expertise in the application area.

Testing Dependent on the Specification Technique

The specification technique employed can aid in testing. An executable specification
can be used as an oracle and, in some cases, as a test generator. Structural properties of
a specification can guide the testing process. If the specification falls within certain lim-
ited classes, properties of those classes can guide the selection of test data. Much work
remains to be done in this area of testing.

m Algebraic. In algebraic specification, properties of a data abstraction are
expressed by means of axioms or rewrite rules. In one testing system, the consis-
tency of an algebraic specification with an implementation is checked by testing.
Each axiom is compiled into a procedure, which is then associated with a set of
test points. A driver program supplies each of these points to the procedure of

238 Chapter 8

its respected axiom. The procedure, in turn, indicates whether the axiom is satis-
fied. Structural coverage of both the implementation and the specification is
computed.

m Axiomatic. Despite the potential for widespread use of predicate calculus as a
specification language, little has been published about deriving test data from
such specifications. A relationship between predicate calculus specifications
and path testing has been explored.

m State machines. Many programs can be specified as state machines, thus pro-
viding an additional means of selecting test data. Because the equivalence
problem of two finite automata is decidable, testing can be used to decide
whether a program that simulates a finite automation with a bounded number
of nodes is equivalent to the one specified. This result can be used to test those
features of programs that can be specified by finite automata—for example, the
control flow of a transaction-processing system.

m Decision tables. Decision tables are a concise method of representing an equiv-
alence partitioning. The rows of a decision table specify all the conditions that
the input may satisfy. The columns specify different sets of actions that may
occur. Entries in the table indicate whether the actions should be performed if
a condition is satisfied. Typical entries are “Yes,” “No,” or “Don’t care.” Each
row of the table suggests significant test data. Cause-effect graphs provide a
systematic means of translating English specifications into decision tables,
from which test data can be generated.

Structural Testing and Analysis

In structural program testing and analysis, test data is developed or evaluated from the
source code. The goal is to ensure that various characteristics of the program are ade-
quately covered.

Structural Analysis

In structural analysis, programs are analyzed without being executed. The techniques
resemble those used in compiler construction. The goal here is to identify fault-prone
code, to discover anomalous circumstances, and to generate test data to cover specific
characteristics of the program’s structure.

m Complexity measures. As resources available for testing are always limited, it
is necessary to allocate these resources efficiently. It is intuitively appealing to
suggest that the more complex the code, the more thoroughly it should be
tested. Evidence from large projects seems to indicate that a small percentage
of the code typically contains the largest number of errors. Various complexity
measures have been proposed, investigated, and analyzed in the literature.

m Data flow analysis. A program can be represented as a flow graph annotated
with information about variable definitions, references, and indefiniteness.

Step 2: Developing the Test Plan

239

From this representation, information about data flow can be deduced for use
in code optimization, anomaly detection, and test data generation. Data flow
anomalies are flow conditions that deserve further investigation, as they may
indicate problems. Examples include: defining a variable twice with no inter-
vening reference, referencing a variable that is undefined, and undefining a
variable that has not been referenced since its last definition. Data flow analysis
can also be used in test data generation, exploiting the relationship between
points where variables are defined and points where they are used.

m Symbolic execution. A symbolic execution system accepts three inputs: a pro-
gram to be interpreted, symbolic input for the program, and the path to follow.
It produces two outputs: the symbolic output that describes the computation of
the selected path, and the path condition for that path. The specification of the
path can be either interactive or preselected. The symbolic output can be used to
prove the program correct with respect to its specification, and the path condi-
tion can be used for generating test data to exercise the desired path. Structured
data types cause difficulties, however, because it is sometimes impossible to
deduce what component is being modified in the presence of symbolic values.

Structural Testing

Structural testing is a dynamic technique in which test data selection and evaluation
are driven by the goal of covering various characteristics of the code during testing.
Assessing such coverage involves the instrumentation of the code to keep track of
which characteristics of the program text are actually exercised during testing. The low
cost of such instrumentation has been a prime motivation for adopting this technique.
More important, structural testing addresses the fact that only the program text reveals
the detailed decisions of the programmer. For example, for the sake of efficiency, a pro-
grammer might choose to implement a special case that appears nowhere in the speci-
fication. The corresponding code will be tested only by chance using functional testing,
whereas use of a structural coverage measure such as statement coverage should indi-
cate the need for test data for this case. Structural coverage measures form a rough
hierarchy, with higher levels being more costly to perform and analyze, but being more
beneficial, as described in the list that follows:

m Statement testing. Statement testing requires that every statement in the pro-
gram be executed. While it is obvious that achieving 100 percent statement cov-
erage does not ensure a correct program, it is equally obvious that anything
less means that there is code in the program that has never been executed!

m Branch testing. Achieving 100 percent statement coverage does not ensure that
each branch in the program flow graph has been executed. For example, execut-
ingan if. . .then statement (no else) when the tested condition is true, tests
only one of two branches in the flow graph. Branch testing seeks to ensure that
every branch has been executed. Branch coverage can be checked by probes
inserted at points in the program that represent arcs from branch points in the
flow graph. This instrumentation suffices for statement coverage as well.

240 Chapter 8

m Conditional testing. In conditional testing, each clause in every condition
is forced to take on each of its possible values in combination with those of
other clauses. Conditional testing thus subsumes branch testing and, therefore,
inherits the same problems as branch testing. Instrumentation for conditional
testing can be accomplished by breaking compound conditional statements
into simple conditions and nesting the resulting if statements.

m Expression testing. Expression testing requires that every expression assume a
variety of values during a test in such a way that no expression can be replaced
by a simpler expression and still pass the test. If one assumes that every state-
ment contains an expression and that conditional expressions form a proper
subset of all the program expressions, then this form of testing properly sub-
sumes all the previously mentioned techniques. Expression testing does require
significant runtime support for the instrumentation.

m Path testing. In path testing, data is selected to ensure that all paths of the pro-
gram have been executed. In practice, of course, such coverage is impossible
to achieve, for a variety of reasons. First, any program with an indefinite loop
contains an infinite number of paths, one for each iteration of the loop. Thus,
no finite set of data will execute all paths. The second difficulty is the infeasible
path problem: It is undecided whether an arbitrary path in an arbitrary pro-
gram is executable. Attempting to generate data for such infeasible paths is
futile, but it cannot be avoided. Third, it is undecided whether an arbitrary
program will halt for an arbitrary input. It is therefore impossible to decide
whether a path is finite for a given input.

In response to these difficulties, several simplifying approaches have been pro-
posed. Infinitely many paths can be partitioned into a finite set of equivalence
classes based on characteristics of the loops. Boundary and interior testing
require executing loops zero times, one time, and, if possible, the maximum
number of times. Linear sequence code and jump criteria specify a hierarchy
of successively more complex path coverage.

Path coverage does not imply condition coverage or expression coverage
because an expression may appear on multiple paths but some subexpressions
may never assume more than one value. For example, in

if a / b then S, else S,

b may be false and yet each path may still be executed.

Error-Oriented Testing and Analysis

Testing is necessitated by the potential presence of errors in the programming process.
Techniques that focus on assessing the presence or absence of errors in the program-
ming process are called error oriented. There are three broad categories of such tech-
niques: statistical assessment, error-based testing, and fault-based testing. These are
stated in order of increasing specificity of what is wrong with the program. Statistical
methods attempt to estimate the failure rate of the program without reference to the
number of remaining faults.

Step 2: Developing the Test Plan

241

Error-based testing attempts to show the absence of certain errors in the program-
ming process. Fault-based testing attempts to show the absence of certain faults in the
code. Since errors in the programming process are reflected as faults in the code, both
techniques demonstrate the absence of faults. They differ, however, in their starting
point: Error-based testing begins with the programming process, identifies potential
errors in that process, and then asks how those errors are reflected as faults. It then
seeks to demonstrate the absence of those reflected faults. Fault-based testing begins
with the code and asks what are the potential faults in it, regardless of what error in the
programming process caused them.

Statistical Methods

Statistical testing employs statistical techniques to determine the operational reliability
of the program. Its primary concern is how faults in the program affect its failure rate
in its actual operating environment. A program is subjected to test data that statistically
models the operating environment, and failure data is collected. From the data, a reli-
ability estimate of the program’s failure rate is computed. This method can be used in
an incremental development environment. A statistical method for testing paths that
compute algebraic functions has also been developed. A prevailing sentiment is that
statistical testing is a futile activity because it is not directed toward finding errors.
However, studies suggest it is a viable alternative to structural testing. Combining sta-
tistical testing with an oracle appears to represent an effective tradeoff of computer
resources for human time.

Error-Based Testing

Error-based testing seeks to demonstrate that certain errors have not been committed in
the programming process. Error-based testing can be driven by histories of programmer
errors, measures of software complexity, knowledge of error-prone syntactic constructs,
or even error guessing. Some of the more methodical techniques are described in the list
that follows:

m Fault estimation. Fault seeding is a statistical method used to assess the num-
ber and characteristics of the faults remaining in a program. Harlan Mills origi-
nally proposed this technique, and called it error seeding. First, faults are
seeded into a program. Then the program is tested and the number of faults
discovered is used to estimate the number of faults yet undiscovered. A diffi-
culty with this technique is that the faults seeded must be representative of the
yet-undiscovered faults in the program. Techniques for predicting the quantity
of remaining faults can also be based on a reliability model.

m Domain testing. The input domain of a program can be partitioned according
to which inputs cause each path to be executed. These partitions are called path
domains. Faults that cause an input to be associated with the wrong path
domain are called domain faults. Other faults are called computation faults.

(The terms used before attempts were made to rationalize nomenclature were
“domain errors” and “computation errors.”) The goal of domain testing is

to discover domain faults by ensuring that the test data limits the range of
undetected faults.

242 Chapter 8

m Perturbation testing. Perturbation testing attempts to decide what constitutes a
sufficient set of paths to test. Faults are modeled as a vector space, and charac-
terization theorems describe when sufficient paths have been tested to discover
both computation and domain errors. Additional paths need not be tested if
they cannot reduce the dimensionality of the error space.

Fault-Based Testing

Fault-based testing aims at demonstrating that certain prescribed faults are not in the
code. It functions well in the role of test data evaluation: Test data that does not succeed
in discovering the prescribed faults is not considered adequate. Fault-based testing
methods differ in both extent and breadth. One with local extent demonstrates that a
fault has a local effect on computation; it is possible that this local effect will not pro-
duce a program failure. A method with global extent demonstrates that a fault will
cause a program failure. Breadth is determined by whether the technique handles a
finite or an infinite class of faults. Extent and breadth are orthogonal, as evidenced by
the techniques described below.

m Local extent, finite breadth. Input-output pairs of data are encoded as a com-
ment in a procedure, as a partial specification of the function to be computed
by that procedure. The procedure is then executed for each of the input values
and checked for the output values. The test is considered adequate only if each
computational or logical expression in the procedure is determined by the test;
that is, no expression can be replaced by a simpler expression and still pass the
test. Simpler is defined in a way that allows only a finite number of substitu-
tions. Thus, as the procedure is executed, each possible substitution is evalu-
ated on the data state presented to the expression. Those that do not evaluate
the same as the original expression are rejected. The system allows methods of
specifying the extent to be analyzed.

m Global extent, finite breadth. In mutation testing, test data adequacy is judged
by demonstrating that interjected faults are caught. A program with interjected
faults is called a mutant, and is produced by applying a mutation operator.
Such an operator changes a single expression in the program to another expres-
sion, selected from a finite class of expressions. For example, a constant might
be incremented by one, decremented by one, or replaced by zero, yielding one
of three mutants. Applying the mutation operators at each point in a program
where they are applicable forms a finite, albeit large, set of mutants. The test
data is judged adequate only if each mutant in this set is either functionally
equivalent to the original program or computes different output than the origi-
nal program. Inadequacy of the test data implies that certain faults can be intro-
duced into the code and go undetected by the test data.

Mutation testing is based on two hypotheses. The competent-programmer hypoth-
esis says that a competent programmer will write code that is close to being
correct; the correct program, if not the current one, can be produced by some
straightforward syntactic changes to the code. The coupling-effect hypothesis says
that test data that reveals simple faults will uncover complex faults as well.

Step 2: Developing the Test Plan

243

Thus, only single mutants need be eliminated, and combinatory effects of mul-
tiple mutants need not be considered. Studies formally characterize the compe-
tent-programmer hypothesis as a function of the probability of the test set’s
being reliable, and show that under this characterization, the hypothesis does
not hold. Empirical justification of the coupling effect has been attempted, but
theoretical analysis has shown that it does not hold, even for simple programs.

m Local extent, infinite breadth. Rules for recognizing error-sensitive data are
described for each primitive language construct. Satisfaction of a rule for a given
construct during testing means that all alternate forms of that construct have
been distinguished. This has an obvious advantage over mutation testing—
elimination of all mutants without generating a single one! Some rules even
allow for infinitely many mutants. Of course, since this method is of local extent,
some of the mutants eliminated may indeed be the correct program.

m Global extent, infinite breadth. We can define a fault-based method based on
symbolic execution that permits elimination of infinitely many faults through
evidence of global failures. Symbolic faults are inserted into the code, which is
then executed on real or symbolic data. Program output is then an expression
in terms of the symbolic faults. It thus reflects how a fault at a given location
will affect the program’s output. This expression can be used to determine
actual faults that could not have been substituted for the symbolic fault and
remain undetected by the test.

Managerial Aspects of Unit Testing and Analysis

Administration of unit testing and analysis proceeds in two stages. First, techniques
appropriate to the project must be selected, and then these techniques must be system-
atically applied.

Selecting Techniques

Selecting the appropriate techniques from the array of possibilities is a complex task
that requires assessment of many issues, including the goal of testing, the nature of the
software product, and the nature of the test environment. It is important to remember
the complementary benefits of the various techniques and to select as broad a range of
techniques as possible, within imposed limits. No single testing or analysis technique
is sufficient. Functional testing suffers from inadequate code coverage, structural test-
ing suffers from inadequate specification coverage, and neither technique achieves the
benefits of error coverage.

m Goals. Different design goals impose different demands on the selection of test-
ing techniques. Achieving correctness requires use of a great variety of tech-
niques. A goal of reliability implies the need for statistical testing using test
data representative of the anticipated user environment. It should be noted,
however, that proponents of this technique still recommend judicious use of
“selective” tests to avoid embarrassing or disastrous situations. Testing may
also be directed toward assessing the utility of proposed software. This kind of

244 Chapter 8

testing requires a solid foundation in human factors. Performance of the soft-
ware may also be of special concern. In this case, external testing is essential.
Timing instrumentation can prove useful.

Often, several of these goals must be achieved simultaneously. One approach to
testing under these circumstances is to order testing by decreasing benefit. For
example, if reliability, correctness, and performance are all desired features, it is
reasonable to tackle performance first, reliability second, and correctness third,
since these goals require increasingly difficult-to-design tests. This approach
can have the beneficial effect of identifying faulty code with less effort.

Nature of the product. The nature of the software product plays an important
role in the selection of appropriate techniques.

Nature of the testing environment. Available resources, personnel, and project
constraints must be considered in selecting testing and analysis strategies.

Control

To ensure quality in unit testing and analysis, it is necessary to control both documen-
tation and the conduct of the test:

m Configuration control. Several items from unit testing and analysis should be

placed under configuration management, including the test plan, test proce-
dures, test data, and test results. The test plan specifies the goals, environment,
and constraints imposed on testing. The test procedures detail the step-by-step
activities to be performed during the test. Regression testing occurs when pre-
viously saved test data is used to test modified code. Its principal advantage

is that it ensures previously attained functionality has not been lost during a
modification. Test results are recorded and analyzed for evidence of program
failures. Failure rates underlie many reliability models; high failure rates may
indicate the need for redesign.

Conducting tests. A test bed is an integrated system for testing software. Mini-
mally, such systems provide the ability to define a test case, construct a test dri-
ver, execute the test case, and capture the output. Additional facilities provided
by such systems typically include data flow analysis, structural coverage
assessment, regression testing, test specification, and report generation.

Task 5: Build the Test Plan

The development of an effective test plan involves the following four steps:

1.

Set the test objectives.

2. Develop a test matrix.
3.
4. Write the test plan.

Define test administration.

Step 2: Developing the Test Plan

245

Setting Test Objectives

The objectives of testing should restate the project objectives from the project plan. In
fact, the test plan objectives should determine whether the project plan objectives have
been achieved. If the project plan does not have clearly stated objectives, testers must
develop their own. In that case, testers must have them confirmed as the project objec-
tives by the project team. Testers can:

m Set objectives to minimize the project risks
m Brainstorm to identify project objectives

m Relate objectives to the testing policy, if established

Normally, there should be ten or fewer test objectives. Having too many objectives
scatters the test team'’s focus.

Work Paper 8-1 is designed for documenting test objectives. To complete the Work
Paper:

m Jtemize the objectives so that they can be referred to by number.
m Write the objectives in a measurable statement to focus testers’ attention.
m Assign a priority to the objectives, as follows:

m High. The most important objectives to be accomplished during testing

m Average. Objectives to be accomplished only after the high-priority test
objectives have been met

m [ow. The least important of the test objectives

m Define the completion criteria for each objective. This should state quantita-
tively how the testers will determine whether the objective has been accom-
plished. The more specific the criteria, the easier it will be for the testers to
follow through.

l'mﬂj Establish priorities so that approximately one-third are high, one-third
are average, and one-third are low.

Developing a Test Matrix

The test matrix is the key component of the test plan. On one side it lists what is to be
tested; on the other, it indicates which test is to be performed, or “how” software will
be tested. Between the two dimensions of the matrix are the tests applicable to the soft-
ware; for example, one test may test more than one software module. The test matrix is
also a test “proof.” It proves that each testable function has at least one test, and that
each test is designed to test a specific function.

An example of a test matrix is illustrated in Table 8-1. This shows four functions in a
payroll system, with three tests to validate the functions. Because payroll is a batch sys-
tem, batched test data is used with various dates, the parallel test is run when posting

246 Chapter 8

to the general ledger, and all changes are verified through a code inspection. The test
matrix can be prepared using the work papers described in the following sections.
(Note: The modules that contain the function(s) to be tested will be identified.)

Table 8-1 Test Matrix Example

SOFTWARE TEST DECK PARALLEL CODE
FUNCTION TRANSACTION TEST INSPECTION
FICA Calculation X X

Gross Pay X X

Tax Deduction X X

General Ledger Charges X X

The recommended test process is first to determine the test factors to be evaluated in
the test process, and then to select the techniques that will be used in performing the test.
Figure 8-5 is a test factor/test technique matrix that shows which techniques are most
valuable for the various test factors. For example, if testers want to evaluate the system
structure for reliability, the execution and recovery testing techniques are recommended.
On the other hand, if testers want to evaluate the functional aspects of reliability,
the requirements, error handling, manual support, and control testing techniques are
recommended.

Individual Software Modules

Testers should list the software modules to be tested on Work Paper 8-2, including the
name of the module, a brief description, and the evaluation criteria. When document-
ing software modules, testers should include the following three categories:

Modules written by the IT development group
Modules written by non-IT personnel

Software capabilities embedded in hardware chips

Structural Attributes

Testers can use Work Paper 8-3 to identify the structural attributes of software that may
be affected and thus require testing. The structural attributes can be those described
earlier (maintainability, reliability, efficiency, usability, and so on) or specific processing
concerns regarding how changes can affect the operating performance of the software.

Structural attributes also include the impact the processing of one software system
has on another software system. This is classified as a structural attribute because the
structure of one system may be incompatible with the structure of another.

Re- Error
Execu-| Recov- | Opera- | Compli- | Secur- | quire- | Regres- | Hand- [Manual | Inter- Par-
ACTOR Stress | tion ery tions |ance ity ments | sion ling |Support |systems |Control | allel

Reliability X X X X

Authorization X X

File Integrity X X X

Audit Trail X X

Continuity of X X X
Processing

Service Level X X X

Access X
Control

Methodology X

Correctness X X X X X X X

Ease of Use X X X

Maintainable X

Portable X X

Coupling X X X

Performance X X X

Ease of X X
Operation

Figure 8-5 Test factor/technique matrix.

248 Chapter 8

Batch Tests

Batch tests are high-level tests. They must be composed during the execution phase in
specific test transactions. For example, a test identified at the test plan level might vali-
date that all dating in a software module is correct. During execution, each date-related
instruction in a software module would require a test transaction. (It is not necessary for
test descriptions at the test planning level to be that detailed.)

Work Paper 8-4 describes each batch test to perform during testing. If you use our
previous example of the testing-related processing date, that task can be described in
the test plan and related to all the software modules in which that test will occur. How-
ever, during execution, the test data for each module that executes that test will be a
different transaction. To complete Work Paper 8-4, you must identify the software proj-
ect, unless it is applicable to all software projects, in which case the word “all” should
be used to describe the software project.

Each test should be named and numbered. In our example, it might be called Date
Compliance test and given a unique number. Numbering is important both to control
tests and to roll test results back to the high-level test described in the test plan.

Figure 8-6 shows a completed test document for a hypothetical test of data valida-
tion routines. Although all the detail is not yet known because the data validation rou-
tines have not been specified at this point, there is enough information to enable a
group to prepare the data validation routines.

Conceptual Test Script for Online System Test

Work Paper 8-5 serves approximately the same purpose for online systems as Work
Paper 8-4 does for batch systems. Work Paper 8-4 is a high-level description of the test
script, not the specific transaction that will be entered during online testing. For the test
planning perspective, it is unimportant whether the individual items will be manually
prepared or generated and controlled using a software tool.

The example given for entering a batch test to validate date-related processing is
also appropriate for test scripts. The primary differences are the sequence in which the
events must occur and the source or location of the origin of the online event.

Figure 8-7 shows an example of developing test scripts for the data validation func-
tion of an order-entry software project. It lists two scripting events, the evaluation cri-
teria, and comments that would be helpful in developing these tests.

Verification Tests
Testers can use Work Paper 8-6 to document verification testing. Verification is a static
test performed on a document developed by the team responsible for creating soft-
ware. Generally, for large documents, the verification process is a review; for smaller
documents, the verification process comprises inspections. Other verification methods
include the following:

m Static analyzers incorporated into the compilers

m Independent static analyzers

m Walkthroughs

m Third-party confirmation of the document’s accuracy

Step 2: Developing the Test Plan 249

Software Project: Payroll Application
Name of Test: Validate Input Test No. 1

Test Objective

Exercise data validation routines.

Test Input
Prepare the following types of input data for each input field:

» valid data

» invalid data

« range of codes

« validation of legitimate values and tables

Test Procedures

Create input transactions that contain the conditions described in test input.
Run the entire test deck until all conditions are correctly processed.

Test Output

Reject all invalid conditions and accept all valid conditions.

Test Controls

Run the entire test each time the test is conducted. Rerun the test until all specified
output criteria have been achieved.

Software or Structure Attribute Tested

The data validation function.

Figure 8-6 Conducting batch tests.

Verification tests normally relate to a specific software project, but because of the
extensiveness of testing, a single verification test may be applicable to many software
projects. For example, it may be determined that each source code listing that is
changed will be inspected prior to unit testing. In this case, the software project should
be indicated as “all.”

Software/Test Matrix

The objective of Work Paper 8-7 is to illustrate that the tests validate and verify all the
software modules, including their structural attributes. The matrix also illustrates which
tests exercise which software modules.

250 Chapter 8

Software Project: Order Entry

Software Module: Test No.: 2
EVALUATION

SEQUENCE SOURCE SCRIPT EVENT CRITERIA COMMENTS

1 Data The data entry The customer A help routine
entry clerk enters an number should be would help to
clerk invalid customer rejected as invalid. locate the proper

order. customer
number.

2 Data The data entry The system should, This tests the
entry clerk enters a first, confirm that entry of a valid
clerk correct order into the information order through the

the system for entered is valid and data validation
one or more for legitimate values, routines.
invalid company and, second, ask the

products. data entry clerk to

verify that all the
information has
been entered
correctly.

Figure 8-7 Example of a test script for a data validation function.

The information to complete this matrix has already been recorded in Work Papers 8-2
through 8-6. The vertical axis of the matrix lists the software modules and structural
attributes from Work Papers 8-2 and 8-3. The horizontal axis lists the tests indicated on
Work Papers 8-4, 8-5, and 8-6. The intersection of the vertical and horizontal axes indi-
cates whether the test exercises the software module/structural attributes listed. This can
be indicated by a check mark or via a reference to a more detailed description that relates
to the specific test and software module.

Defining Test Administration

The administrative component of the test plan identifies the schedule, milestones, and
resources needed to execute the test plan as illustrated in the test matrix. This cannot
be undertaken until the test matrix has been completed.

Prior to developing the test plan, the test team has to be organized. This initial test
team is responsible for developing the test plan and then defining the administrative
resources needed to complete the plan. Thus, part of the plan will be executed as the
plan is being developed; that part is the creation of the test plan, which itself consumes
resources.

The test plan, like the implementation plan, is a dynamic document—that is, it
changes as the implementation plan changes and the test plan is being executed. The test
plan must be viewed as a “contract” in which any modifications must be incorporated.

Step 2: Developing the Test Plan

251

Work Papers 8-8 through 8-10, described in the following sections, are provided to
help testers develop and document the administrative component of the test plan.

Test Plan General Information

Work Paper 8-8 is designed to provide background and reference data on testing. In
many organizations this background information will be necessary to acquaint testers
with the project. It is recommended that, along with this background data, testers be
required to read all or parts of Chapters 1 through 4.

Define Test Milestones

Work Paper 8-9 is designed to indicate the start and completion date of each test. These
tests are derived from the matrix in Work Papers 8-4, 8-5, and 8-6. The start/comple-
tion milestones are listed as numbers. If you prefer, these may be days or dates. For
example, milestone 1 could just be week 1, day 1, or November 18. The tests from the
test matrix are then listed in this work paper in the Test column; a start and completion
milestone are checked for each test.

m Organizations that have scheduling software should use that in lieu of this
work paper. Both the work paper and the scheduling software should include the
person responsible for performing that test as the assignment becomes known.

Define Checkpoint Administration

Test administration contains all the attributes associated with any other project. Test
administration is, in fact, project management; the project is testing. Administration
involves identifying what is to be tested, who will test it, when it will be tested, when it
is to be completed, the budget and resources needed for testing, any training the testers
need, and the materials and other support for conducting testing.

Work Paper 8-10, which is completed for each milestone, can be used to schedule
work as well as to monitor its status. Work Paper 8-10 also covers the administrative
aspects associated with each testing milestone. If the test plan calls for a different test
at six milestones, testers should prepare six different work papers. Because budgeting
information should be summarized, a total budget figure for testing is not identified in
the administrative part of the plan.

Writing the Test Plan

The test plan can be as formal or informal a document as the organization’s culture dic-
tates. When the test team has completed Work Papers 8-1 through 8-10, they have com-
pleted the test plan. The test plan can either be the ten work papers or the information
on those work papers transcribed to a more formal test plan. Generally, if the test team
is small, the work papers are more than adequate. As the test team grows, it is better to
formalize the test plan.

Figure 8-8 illustrates a four-part test plan standard. It is a restatement and slight
clarification of the information contained on the work papers in this chapter.

252 Chapter 8

1.

GENERAL INFORMATION

1.1

Summary. Summarize the functions of the software and the tests to be
performed.

1.2 Environment and Pretest Background. Summarize the history of the
project. Identify the user organization and computer center where the
testing will be performed. Describe any prior testing and note results that
may affect this testing.

1.3 Test Objectives. State the objectives to be accomplished by testing.

1.4 Expected Defect Rates. State the estimated number of defects for
software of this type.

1.5 References. List applicable references, such as:

a) Project request authorization.
b) Previously published documents on the project.
¢) Documentation concerning related projects.

PLAN

2.1 Software Description. Provide a chart and briefly describe the inputs,
outputs, and functions of the software being tested as a frame of
reference for the test descriptions.

2.2 Test Team. State who is on the test team and their test assignment(s).

2.3 Milestones. List the locations, milestone events, and dates for the testing.

2.4 Budgets. List the funds allocated to test by task and checkpoint.

2.5 Testing (systems checkpoint). Identify the participating organizations and

the system checkpoint where the software will be tested.

2.5.1 Schedule (and budget). Show the detailed schedule of dates and
events for the testing at this location. Such events may include
familiarization, training, data, as well as the volume and
frequency of the input. Resources allocated for test should be
shown.

2.5.2 Requirements. State the resource requirement, including:

a) Equipment. Show the expected period of use, types, and
quantities of the equipment needed.

b) Software. List other software that will be needed to support
the testing that is not part of the software to be tested.

c) Personnel. List the numbers and skill types of personnel that
are expected to be available during the test from both the
user and development groups. Include any special
requirements such as multishift operation or key personnel.

Figure 8-8 System test plan standard.

Step 2: Developing the Test Plan 253

2.5.3 Testing Materials. List the materials needed for the test, such as:

a) System documentation

b) Software to be tested and its medium
¢) Testinputs

d) Test documentation

e) Testtools

2.5.4 Test Training. Describe or reference the plan for providing training
in the use of the software being tested. Specify the types of
training, personnel to be trained, and the training staff.

2.5.5 Test to be Conducted. Reference specific tests to be conducted at
this checkpoint.

2.6 Testing (system checkpoint). Describe the plan for the second and
subsequent system checkpoint where the software will be tested in a
manner similar to paragraph 2.5.

3. SPECIFICATIONS AND EVALUATION
3.1 Specifications

3.1.1 Business Functions. List the business functional requirement
established by earlier documentation.

3.1.2 Structural Functions. List the detailed structural functions to be
exercised during the overall test.

3.1.3 Test/Function Relationships. List the tests to be performed on the
software and relate them to the functions in paragraph 3.1.2.

3.1.4 Test Progression. Describe the manner in which progression is
made from one test to another so that the entire test cycle is
completed.

3.2 Methods and Constraints.

3.2.1 Methodology. Describe the general method or strategy of the
testing.

3.2.2 Test Tools. Specify the type of test tools to be used.

3.2.3 Extent. Indicate the extent of the testing, such as total or partial.
Include any rationale for partial testing.

3.2.4 Data Recording. Discuss the method to be used for recording the
test results and other information about the testing.

3.2.5 Constraints. Indicate anticipated limitations on the test due to
test conditions, such as interfaces, equipment, personnel, data-
bases.

Figure 8-8 (continued)

254 Chapter 8

3. SPECIFICATIONS AND EVALUATION (continued)
3.3 Evaluation.

3.3.1 Criteria. Describe the rules to be used to evaluate test results,
such as range of data values used, combinations of input types
used, maximum number of allowable interrupts or halts.

3.3.2 Data Reduction. Describe the techniques to be used for
manipulating the test data into a form suitable for evaluation,
such as manual or automated methods, to allow comparison of
the results that should be produced to those that are produced.

4. TEST DESCRIPTIONS

4.1 Test (Identify). Describe the test to be performed (format will vary for on-
line test script).

4.1.1 Control. Describe the test control, such as manual, semiautomatic
or automatic insertion of inputs, sequencing of operations, and
recording of results.

4.1.2 Inputs. Describe the input data and input commands used during
the test.

4.1.3 Outputs. Describe the output data expected as a result of the test
and any intermediate messages that may be produced.

4.1.4 Procedures. Specify the step-by-step procedures to accomplish
the test. Include test setup, initialization, steps and termination.

4.2 Test (Identify). Describe the second and subsequent tests in a manner
similar to that used in paragraph 4.1.

Figure 8-8 (continued)

Task 6: Inspect the Test Plan

This task describes how to inspect the corrected software prior to its execution. This
process is used, first, because it is more effective in identifying defects than validation
methods; and second, it is much more economical to remove the defects at the inspec-
tion stage than to wait until unit or system testing. This task describes the inspection
process, including the role and training of the inspectors, and the step-by-step proce-
dures to complete the process.

The implementation/rework step of the project team involves modifying software
and supporting documentation to make it compliant. Thereafter, the software needs
to be tested. However, as already noted, identifying defects in dynamic testing is more
costly and time-consuming than performing a static inspection of the changed prod-
ucts or deliverables.

Inspection, then, is a process by which completed but untested products are evalu-
ated as to whether the specified changes were installed correctly. To accomplish this,

Step 2: Developing the Test Plan

255

inspectors examine the unchanged product, the change specifications, and the changed
product to determine the outcome. They look for three types of defects: errors, meaning
the change has not been made correctly; missing, meaning something should have
been changed but was not changed; and extra, meaning something not intended was
changed or added.

The inspection team reviews the product after each inspector has reviewed it individ-
ually. The team then reaches a consensus on the errors and missing/extra defects. The
author (the person implementing the project change) is given those defect descriptions
so that the product can be changed prior to dynamic testing. After the changes are made,
they are re-inspected to verify correctness; then dynamic testing can commence. The pur-
pose of inspections is twofold: to conduct an examination by peers, which normally
improves the quality of work because the synergy of a team is applied to the solution,
and to remove defects.

Inspection Concerns

The concerns regarding the project inspection process are basically the same associated
with any inspection process. They are as follows:

m Inspections may be perceived to delay the start of testing. Because inspection
is a process that occurs after a product is complete but before testing, it does in
fact impose a delay to dynamic testing. Therefore, many people have trouble
acknowledging that the inspection process will ultimately reduce implementa-
tion time. In practice, however, the time required for dynamic testing is
reduced when the inspection process is used; thus, the total time is reduced.

m There is resistance to accepting the inspection role. There are two drawbacks
to becoming an inspector. The first is time; an inspector loses time on his or her
own work assignments. The second is that inspectors are often perceived as
criticizing their peers. Management must provide adequate time to perform
inspections and encourage a synergistic team environment in which inspectors
are members offering suggestions, as opposed to being critics.

m Space may be difficult to obtain for conducting inspections. Each deliverable
is inspected individually by a team; therefore, meeting space is needed in
which to conduct inspections. Most organizations have limited meeting space,
so this need may be difficult to fulfill. Some organizations use cafeteria space
during off hours; or if the group is small enough, they can meet in someone’s
work area. However, it is important to hold meetings in an environment that
does not affect others” work.

m Change implementers may resent having their work inspected prior to test-
ing. Traditional software implementation methods have encouraged sloppy
developments, which rely on testing to identify and correct problems. Thus,
people instituting changes may resist having their products inspected prior to
having the opportunity to identify and correct the problems themselves. The
solution is to encourage team synergism with the goal of developing optimal
solutions, not criticizing the work of individuals.

256 Chapter 8

m Inspection results may affect individual performance appraisal. In a sense,
the results of an inspection are also a documented list of a person’s defects,
which can result in a negative performance appraisal. Management must
emphasize that performance appraisals will be based on the final product,
not an interim defect list.

Products/Deliverables to Inspect

Each software project team determines the products to be inspected, unless specific
inspections are mandated by the project plan. Consider inspecting the following
products:

m Project requirements specifications
Software rework/maintenance documents
Updated technical documentation
Changed source code

Test plans

User documentation (including online help)

Formal Inspection Roles

The selection of the inspectors is critical to the effectiveness of the process. It is impor-
tant to include appropriate personnel from all impacted functional areas and to care-
fully assign the predominant roles and responsibilities (project, operations, external
testing, etc.). There should never be fewer than three inspection participants but not
more than five.

Each role must be filled on the inspection team, although one person may take on
more than one role. The following subsections outline the participants and identify
their roles and responsibilities in the inspection process.

Moderator

The moderator coordinates the inspection process and oversees any necessary follow-
up tasks. It is recommended that the moderator not be a member of the project team.
Specifically, the moderator does the following;:

m Organizes the inspection by selecting the participants; verifies the distribution
of the inspection materials; and schedules the overview, inspection, and
required follow-up sessions.

m Leads the inspection process; ensures that all participants are prepared; encour-
ages participation; maintains focus on finding defects; controls flow and direc-
tion; and maintains objectivity.

Step 2: Developing the Test Plan

257

Controls the inspection by enforcing adherence to the entry and exit criteria;
seeks consensus on defects; makes the final decision on disagreements; directs
the recording and categorizing of defects; summarizes inspection results; and
limits inspections to one to two hours.

Ensures the author completes the follow-up tasks.
Completes activities listed in moderator checklist (reference Work Paper 8-11):

m Determine if the product is ready for inspection, based on entry criteria for
the type of inspections to be conducted.

m Select inspectors and assign the roles of reader and recorder.

m FEstimate inspection preparation time (e.g., 20 pages of written documenta-
tion per two hours of inspections).

m Schedule the inspection meeting and send inspection meeting notices to
participants.

m Determine if overview is required (e.g., if the product is lengthy or complex)
with author and project leader.

m Oversee the distribution of the inspection material, including the meeting
notice.

Reader

The reader is responsible for setting the pace of the inspection. Specifically, the reader:

Is not also the moderator or author
Has a thorough familiarity with the material to be inspected
Presents the product objectively

Paraphrases or reads the product material line by line or paragraph by para-
graph, pacing for clarity and comprehension

Recorder

The recorder is responsible for listing defects and summarizing the inspection results.
He or she must have ample time to note each defect because this is the only informa-
tion that the author will have to find and correct the defect. The recorder should avoid
using abbreviations or shorthand that may not be understood by other team members.
Specifically, the recorder:

May also be the moderator but cannot be the reader or the author
Records every defect
Presents the defect list for consensus by all participants in the inspection

Classifies the defects as directed by the inspectors by type, class, and severity,
based on predetermined criteria

258 Chapter 8

Author
The author is the originator of the product being inspected. Specifically, the author:

Initiates the inspection process by informing the moderator that the product is
ready for inspection

May also act as an inspector during the inspection meeting
Assists the moderator in selecting the inspection team

Meets all entry criteria outlined in the appropriate inspection package cover
sheet

Provides an overview of the material prior to the inspection for clarification, if
requested

Clarifies inspection material during the process, if requested
Corrects the defects and presents finished rework to the moderator for sign-off

Forwards all materials required for the inspection to the moderator as indicated
in the entry criteria

Inspectors

The inspectors should be trained staff who can effectively contribute to meeting objec-
tives of the inspection. The moderator, reader, and recorder may also be inspectors.
Specifically, the inspectors:

Must prepare for the inspection by carefully reviewing and understanding the
material

Maintain objectivity toward the product
Record all preparation time

Present potential defects and problems encountered before and during the
inspection meeting

Formal Inspection Defect Classification

The classification of defects provides meaningful data for their analysis and gives the
opportunity for identifying and removing their cause. This results in overall cost sav-
ings and improved product quality.

Each defect should be classified as follows:

By origin. Indicates the development phase in which the defect was generated
(requirements, design, program, etc.).

By type. Indicates the cause of the defect. For example, code defects could be
errors in procedural logic, or code that does not satisfy requirements or deviates
from standards.

By class. Defects should be classified as missing, wrong, or extra, as described
previously.

Step 2: Developing the Test Plan

259

m By severity. There are two severity levels: major (those that either interrupt
system operation or cause an incorrect result) and minor (all those that are not
major).

Inspection Procedures

The formal inspection process is segmented into the following five subtasks, each of
which is distinctive and essential to the successful outcome of the overall process:

Planning and organizing
Overview session (optional)
Individual preparation

Inspection meeting

S A N

Rework and follow-up

Planning and Organizing

The planning step defines the participants’ roles and defines how defects will be clas-
sified. It also initiates, organizes, and schedules the inspection.

Overview Session

This task is optional but recommended. Its purpose is to acquaint all inspectors with the
product to be inspected and to minimize individual preparation time. This task is espe-
cially important if the product is lengthy, complex, or new; if the inspection process is
new; or if the participants are new to the inspection process.

Individual Preparation

The purpose of this task is to allot time for each inspection participant to acquire a thor-
ough understanding of the product and to identify any defects (per exit criteria).
The inspector’s responsibilities are to:

m Become familiar with the inspection material

m Record all defects found and time spent on the inspection preparation report
(see Work Paper 8-12) and inspection defect list (see Work Paper 8-13)

Each inspector performs a “desk review” of the material, with the following recom-
mended guidelines:

m]t should be performed in one continuous time span.

m The inspector must disregard the style of the work product (for example, the
way a programmer chooses to build a report).

m The emphasis should be on meeting standards and ensuring that output meets
the product specification.

m Every defect must be identified.

260 Chapter 8

The activities involved in performing an individual inspection are as follows:

Review the input product (product specification).
Review the output product (author’s work).

Identify each input specification by a unique identifier on the input product
document.

Trace specifications one by one to the output product, essentially repeating the
author’s process.

Cross-reference the output to the input specification (block out output that
relates to the input specification).

Continue this process until all specifications have been traced and all output
has been referenced.

During the individual inspection, each inspector records defects, questions, and
concerns to be addressed during the inspection meeting. Recommended guidelines for
recording these items are that:

Every defect should be recorded, no matter how small.

Areas of concern regarding correctness of input specifications should be noted
as issues to discuss.

Significant inefficiencies in the output product should be noted as issues to
discuss.

Any output that does not have an input specification should be marked as a
defect (that is, “extra”).

Inspection Meeting

The purpose of the inspection meeting is to find defects in the product, not to correct
defects or suggest alternatives. A notice is sent to all participants notifying them of the
meeting (see Work Paper 8-14). The following are the responsibilities of the meeting
participants, in the sequence they occur:

Moderator responsibilities (at the beginning of the inspection)
m Introduce participants and identify roles.
m Restate the objective of the inspection.

m Verify inspectors’ readiness by checking time spent in preparation and
whether all material was reviewed prior to the meeting (as indicated on
each inspector’s inspection preparation report). If any of the participants
are not prepared, the moderator must decide whether to continue with the
inspection or reschedule it to allow for further preparation.

Reader responsibilities

m Read or paraphrase the material.

Step 2: Developing the Test Plan

261

m Inspector responsibilities

Discuss potential defects and reach a consensus about whether the defects
actually exist.

m Recorder responsibilities

Record defects found, by origin, type, class, and severity, on the inspection
defect list.

Classify each defect found, with concurrence from all inspectors.

Prepare the inspection defect summary (see Work Paper 8-15).

= Author responsibilities

Clarify the product, as necessary.

m Moderator responsibilities (at the end of the inspection)

Call the inspection to an end if a number of defects are found early, indicat-
ing that the product is not ready for inspection. The author then is responsi-
ble for reinitiating an inspection, through the moderator, once the product
is ready.

Determine the disposition of the inspection and any necessary follow-up
work.

Approve the inspection defect list and the inspection summary, and then
forward copies to the author and quality assurance personnel.

Sign off on the inspection certification report if no defects were found (see
Work Paper 8-16).

Rework and Follow-Up

The purpose of this task is to complete required rework, obtain a sign-off or initiate a
reinspection, and capture inspection results. Listed next are the responsibilities of the
participants, in order of occurrence:

m Author responsibilities

Complete all rework to correct defects found during the inspection.

Reinitiate the inspection process if the inspection ended with major rework
required.

Contact the moderator to approve the rework if the inspection ended with
minor rework required.

m Moderator responsibilities

Review all rework completed and sign off on the inspection report after all
the defects have been corrected.

m Recorder responsibilities

Summarize defect data and ensure its entry into an inspection defect database.

262 Chapter 8

Check Procedures

Work Paper 8-17 contains the items to evaluate to determine the accuracy and com-
pleteness of the test plan. The questions are designed so that a Yes response is desirable,
and a No response requires that testers evaluate whether that item should be addressed.
If the item is not applicable, a check mark should be placed in the N/A column. For No
responses, a comment should be entered; if action is required, the results of the action
should also be recorded in the Comments column.

Output

The single deliverable from this step is the test plan. It should be reviewed with appro-
priate members of management to determine its adequacy. Once approved, the tester’s
primary responsibility is to execute the test in accordance with that plan, and then
report the results. Once the test plan is approved, testers should not be held responsi-
ble for potential omissions.

Guidelines

Planning can be one of the most challenging aspects of the software testing process.
The following guidelines can make the job a little easier:

1. Start early. Even though you might not have all the details at hand, you can
complete a great deal of the planning by starting on the general and working
toward the specific. By starting early, you can also identify resource needs and
plan for them before they are subsumed by other areas of the project.

2. Keep the test plan flexible. Make it easy to add test cases, test data, and so on.
The test plan itself should be changeable, but subject to change control.

3. Review the test plan frequently. Other people’s observations and input greatly
facilitate achieving a comprehensive test plan. The test plan should be subject
to quality control just like any other project deliverable.

4. Keep the test plan concise and readable. The test plan does not need to be
large and complicated. In fact, the more concise and readable it is, the more
useful it will be. Remember, the test plan is intended to be a communication
document. The details should be kept in a separate reference document.

5. Calculate the planning effort. You can count on roughly one-third of the test-
ing effort being spent on planning, execution, and evaluation, respectively.

6. Spend the time to develop a complete test plan. The better the test plan, the
easier it will be to execute the tests.

Step 2: Developing the Test Plan

263

Summary

The test plan drives the remainder of the testing effort. Well-planned test projects tend
to cost less and get completed earlier than projects with incomplete test plans. It is not
unusual to spend approximately one-third of the total test effort on planning, but that
time reaps rewards during test execution and reporting.

This chapter covers test planning from a risk-oriented approach. Test objectives are
designed to address the significant risks. The objectives are decomposed into test
transactions. The test plan is completed when the administrative data, such as sched-
ule and budget, are added to the written test plan.

264 Chapter 8

WORK PAPER 8-1 Test Objective

Number

Objective

Priority

Completion
Criteria

Step 2: Developing the Test Plan 265

WORK PAPER 8-2 Software Module

Software Project:

Software Module Evaluation
Number Name Description Criteria

266 Chapter 8

WORK PAPER 8-3 Structural Attribute

Software Project:

Software Structural
Model Number Attribute

Description

Evaluation
Criteria

Step 2: Developing the Test Plan 267

WORK PAPER 8-4 Batch Tests

Software Project:

Name of Test:

Test No.

Test Objective

Test Input

Test Procedures

Test Output

Test Controls

Software or Structure Attribute Tested

268 Chapter 8

WORK PAPER 8-5 Conceptual Test Script for Online System Test

Software Project:

Software Module:

Sequence

Source

Script Event

Test No.

Evaluation
Criteria

Comments

Step 2: Developing the Test Plan 269

WORK PAPER 8-6 Verification Tests

Software Project:

Verification System Test Point/
Number Test Product Purpose Responsibility Schedule

270 Chapter 8

WORK PAPER 8-7 Software/Test Matrix

Software Project:

Tests

Software Module 1 2 3 4 5 6

10

Step 2: Developing the Test Plan 271

WORK PAPER 8-8 Test Plan General Information

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Software Project The name or number that uniquely identifies the project or system that will be tested
for compliance.

Summary A one- or two-paragraph overview of what is to be tested and how the testing will be
performed.

Pretest Background Summary of any previous test experiences that might prove helpful with testing.The
assumption is, if there were problems in the past, they will probably continue;
however, if there were few problems with test tools, the test team can expect to use
those tools effectively.

Test Environment The computer center or facilities used to test the application. In a single computer
center installation, this subsection is minimal. If the software is used in multiple
installations, the test environments may need to be described extensively.

Test Constraints Certain types of testing may not be practical or possible during testing. For example,
in banking systems in which the software ties into the Fed Wire system, it is not
possible to test software with that facility. In other cases, the software cannot yet
interface directly with production databases, and therefore the test cannot provide
assurance that some of those interfaces work. List all known constraints.

References Any documents, policies, procedures, or regulations applicable to the software being
tested or the test procedures. It is also advisable to provide a brief description of why
the reference is being given and how it might be used during the testing process.

When to stop What type of test results or events should cause testing to be stopped and the
testing software returned to the implementation team for more work.

Software Project:

Summary

Pretest Background

Test Environment

Test Constraints

References

When to Stop Testing

272 Chapter 8

WORK PAPER 8-9

Test Milestones

Field Requirements
FIELD

INSTRUCTIONS FOR ENTERING DATA

Tests

Start/Completion
Milestone

Intersection between
Tests and Start/
Completion
Milestones

Tests

Tests to be conducted during execution (the tests described on Work Papers 8-4,
8-5, and 8-6 and shown in matrix format in Work Paper 8-7). The vertical column
can contain either or both the test number and/or name.

The names to identify when tests start and stop. The milestones shown in

Work Paper 8-9 are numbers 1-30, but these could be week numbers, day

numbers, or specific dates such as November 18, 1999, included in the heading
of the vertical columns.

Insert a check mark in the milestone where the test starts, and a check mark in the
column where the tests are to be completed.

Start/Completion Milestones

6(7|8|9|10(11/12|13|14(15(16|17|18|19(20|21|22|23|24|25|26|27|28(29|30

Step 2: Developing the Test Plan 273

WORK PAPER 8-10 Administrative Checkpoint

Field Requirements

FIELD

INSTRUCTIONS FOR ENTERING DATA

Software Project

Project
Checkpoint for Test

Schedule

Budget

Resources

Testing Materials

Test Training

The name or number that uniquely identifies the project or system that will be tested
for compliance.

The name of the project being tested.

The name of the systems development checkpoint at which testing occurs. Unless the
test team knows which development documents have been completed, testing is
extremely difficult to perform.

The dates on which the following items need to be started and completed:
e plan

e train test group

e obtain data

® test execution

e test report(s)

The test resources allocated at this milestone, including both test execution and test
analysis and reporting.

The resources needed for this checkpoint, including:

e equipment (computers and other hardware needed for testing)

e software and test personnel (staff to be involved in this milestone test, designated by
name or job function)

Materials needed by the test team to perform the test at this checkpoint, including:

e system documentation (specific products and documents needed to perform the test
at this point)

e software to be tested (names of the programs and subsystems to be tested at this
point)

o test input (files or data used for test purposes)

® test documentation (any test documents needed to conduct a test at this point)

e test tools (software or other test tools needed to conduct the test at this point)

Note: Not all these materials are needed for every test.

It is essential that the test team be taught how to perform testing. They may need
specific training in the use of test tools and test materials, the performance of specific
tests, and the analysis of test results.

(continues)

274 Chapter 8

WORK PAPER 8-10 (continued)

Software Project:

Test Milestone Number:

Start

Finish

Schedule: Test Plan:
Tester Training:
Obtaining Data:

Execution:
Report:
Budget:
Resources
Equipment:

Support Personnel:

Test Personnel:

Testing Materials

Project Documentation:

Software to Be Tested:

Test Input:

Test Documentation:

Test Tools:

Test Training

Step 2: Developing the Test Plan 275

WORK PAPER 8-11 Moderator Checklist

Check that entry criteria (inspection package cover sheet) have been met.

Meet with author and team leader to select qualified inspection participants and
assign roles.

Determine need for an overview session.

Schedule inspection meeting; complete inspection meeting notice.

Gather materials from author, and distribute to inspection participants.

Talk with inspectors to ensure preparation time.

Complete self-preparation of material for inspection.

Conduct inspection meeting.

Ensure completion and distribution of inspection defect list and inspection summary.
Verify conditional completion (moderator review or reinspection).

Complete inspector certification report.

276 Chapter 8

WORK PAPER 8-12 Inspection Preparation Report

Software Project: Date:

Name of Item Being Inspected:

Item Version Identification:

Material Size (lines/pages): Expected Preparation Time:

Preparation Log:
Date Time Spent

Total Preparation Time:

Defect List:
Location Defect Description Exit Criteria Violated

Step 2: Developing the Test Plan 277

WORK PAPER 8-13

Inspection Defect List

Field Requirements
FIELD

INSTRUCTIONS FOR ENTERING DATA

Project Name
Date

Name of Item Being
Inspected

Item Version
Identification

Material Size

Expected Preparation
Time

Moderator

Phone

Inspection Type
Release #

Product Type
Location

Origin/Defect Description

Defect Phase
Defect Type

Severity Class

Severity MAJ/MIN

The name of the project in which an interim deliverable is being inspected.
The date on which this workpaper is completed.

The number or name by which the item being Inspected is known.
The version number if more than one version of the item is being inspected.

The size of the item being inspected. Code is frequently described as number of
lines of executable code. Written documentation is frequently described as
number of pages.

Total expected preparation time of all the inspectors.

The name of the person leading the inspection.
The phone number of the moderator.

Indicates whether an initial inspection or a reinspection of the item to verify
defect correction.

A further division of version number indicating the sequence in which variations
of a version are released into test.

The type of product being inspected, such as source code.

The location of a defect determined to be a defect by the formal inspection
meeting.

The name by which the defect is known in the organization; inspectors’ opinion
as to where that defect originated.

The phase in the development process at which the defects were uncovered.

A formal name assigned to the defect. This Work Paper suggests 17 different
defect types. Your organization may wish to modify or expand this list.

Indicate whether the defect is an extra, missing, or wrong class. (See Chapter 8
for explanation of defect class.)

Indicate whether the defect is of major or minor severity. (See Chapter 8 for a
discussion of the meaning of major and minor.

Note: This form is completed by the inspector filling the reporter role during the
formal inspection process.

(continues)

278 Chapter 8

WORK PAPER 8-13 (continued)

Project Name:

Date:

Name of Iltem Being Inspected:

Iltem Version ldentification:

Material Size (lines/pages):

Expected Preparation Time:

Moderator: Phone:
Inspection Type: Inspection Release #:
Reinspection Product Type:

Origin Defect Defect Severity
Location Defect Description Phase Type Class Maj/Min
Defect Types:
CM Comments LO Logic PF Performance
DA Data LR Linkage Requirements RQ Requirements
DC Documentation MN Maintainability SC Spec Clarification

EN English Readability MS Messages/Return Codes
IF Interface OT Other

LD Logical Design PD Physical Design

Defect Class: E Extra

M Missing

ST Standards
TP Test Plan

W Wrong

Step 2: Developing the Test Plan 279

WORK PAPER 8-14 Inspection Meeting Notice

Project Name: Date:

Name of Iltem Being Inspected:

Item Version Identification:

Material Size (lines/pages): Expected Preparation Time:
Moderator: Phone:
Inspection Type: Inspection

Reinspection

Schedule:
Date:

Time:

Location:

Duration:

Participants:

Name Phone Role

(continues)

280 Chapter 8

WORK PAPER 8-14 (continued)

Comments:

Step 2: Developing the Test Plan 281

WORK PAPER 8-15 Inspection Defect Summary
Project Name: Date:
Name of Iltem Being Inspected:
Item Version Identification:
Material Size (lines/pages):
Moderator: Phone:
Inspection Type: Inspection

Reinspection

Minor Defect Class Major Defect Class
Defect Types E M W Total E M w Total

CM (Comments)

DA (Data)

DC (Documentation)

EN (English Readability)

IF (Interfaces)

LD (Logical Design)

LO (Logic)

LR (Linkage Requirements)

MN (Maintainability)

MS (Messages/Return
Codes)

OT (Other)

PD (Physical Design)

PF (Performance)

RQ (Requirements)

SC (Spec Clarification)

ST (Standards)

TP (Test Plan)

Totals:

282 Chapter 8

WORK PAPER 8-16 Inspection Certification Report

Project Name: Date:

Name of Item Being Inspected:

Item Version ldentification:

The following people have inspected the named item and have agreed that all technical,
contractual, quality, and other requirements and inspection criteria have been satisfied:

Moderator:

Recorder:

Reader:

Author:

Software Quality Representative:

Inspectors:

Moderator Signature/Date

Step 2: Developing the Test Plan 283

WORK PAPER 8-17 Quality Control Checklist

YES | NO | NA COMMENTS

Software Function/Software Attribute
Work Papers

1. Have all the business software functions
been identified?

2. Does the sponsor/user agree that these
are the appropriate software functions?

3. Is the software function identified by a
commonly used name?

4, Are all the software functions described?

5. Have the criteria for evaluating the
software functions been identified?

6. Are the evaluation criteria measurable?

7. Has the structure addressed:
Reliability?
Efficiency?
Integrity?
Usability?
Maintainability?
Testability?
Flexibility?
Portability?
Reusability?
Interoperability?

(continues)

284 Chapter 8

WORK PAPER 8-17 (continued)

YES | NO | NA COMMENTS
8. Have the criteria for each structural
attribute been stated?
9. Are the evaluation criteria measurable?
10. Has the description for each structural

attribute been given?

Work Papers on Tests to Be Conducted

1. Has the test been named?

2. Has the test been given a unique
identifying number?

3. Has the test objective been stated clearly
and distinctly?

4. Are the tests appropriate to evaluate the
functions defined?

5. Is the level of detail on the document
adequate for creating actual test con-
ditions once the system is implemented?

6. Are the verification tests directed at
project products?

7. Is the verification test named?

Step 2: Developing the Test Plan 285

WORK PAPER 8-17 (continued)

YES | NO | NA COMMENTS
8. Is the name of the verification test
adequate for test personnel to
understand the intent of the test?
9. Have the products to be tested
been identified?
10. Has the purpose of the verification test
been stated?
11. Has the sequence in which each online
test will be performed been identified?
12. Has the name for each test been
included (optional)?
13. Have the criteria that would cause
testing to be stopped been indicated?
14. Are the stop criteria measurable (i.e.,
there is no question that the criteria
have been met)?
15. Are the stop criteria reasonable?

Software Function/Test Matrix

Does the matrix contain all the software
functions defined on Work Paper 8-2?7

2. Does the matrix contain all the structural
attributes defined on Work Paper 8-3?
3. Does the matrix contain all the tests

described in test Work Papers 8-4, 8-5,
and 8-67

(continues)

286 Chapter 8

WORK PAPER 8-17 (continued)

YES | NO| NA COMMENTS

4. Are the tests related to the functions?

5. Are there tests for evaluating each
software function?

6. Are there tests for evaluating each
structural attribute?

Administrative Work Papers

1. Has a work paper been prepared for each
test milestone?

2. Has the date for starting the testing
been identified?

3. Has the date for starting test team
training been identified?

4. Has the date for collecting the testing
material been identified?

5. Has the concluding date of the test been
identified?

6. Has the test budget been calculated?

7. Is the budget consistent with the test
workload?

8. Is the schedule reasonably based on the
test workload?

9. Have the equipment requirements for
the test been identified?

Step 2: Developing the Test Plan 287

WORK PAPER 8-17 (continued)

YES | NO| NA COMMENTS

10. Have the software and documents
needed for conducting the test been
identified?

11. Have the personnel for the test been
identified?

12. Have the system documentation
materials for testing been identified?

13. Has the software to be tested been
identified?

14. Has the test input been defined?

15. Have the needed test tools been
identified?

16. Has the type of training that needs to be
conducted been defined?

17. Have the personnel who require training
been identified?

18. Will the test team be notified of the
expected defect rate at each checkpoint?

19. Has a test summary been described?

20. Does this summary indicate which
software is to be included in the
test?

21. Does the summary indicate the general

approach to testing?

(continues)

288 Chapter 8

WORK PAPER 8-17 (continued)

YES | NO | NA COMMENTS

22. Has the pretest background been
defined?

23. Does the pretest background describe
previous experience in testing?

24. Does the pretest background
describe the sponsor’s/user’s
attitude to testing?

25. Has the test environment been
defined?

26. Does the test environment indicate
which computer center will be used for
testing?

27. Does the test environment indicate
permissions needed before beginning
testing (if appropriate)?

28. Does the test environment state all the
operational requirements that will be
placed on testing?

29. Have all appropriate references been
stated?

30. Has the purpose for listing references
been stated?

31. Are the number of references complete?

32. Are the test tools consistent with the
departmental standards?

33. Are the test tools complete?

Step 2: Developing the Test Plan 289

WORK PAPER 8-17 (continued)

YES | NO | NA COMMENTS

34. Has the extent of testing been defined?

35. Have the constraints of testing been
defined?

36. Are the constraints consistent with the
resources available for testing?

37. Are the constraints reasonable based on
the test objectives?

38. Has the general method for recording
test results been defined?

39. Is the data reduction method consistent
with the test plan?

40. Is the information needed for data
reduction easily identifiable in the test
documentation?

Test Milestones Work Paper

1. Has the start date of testing been
defined?

2. Are all the test tasks defined?

3. Are the start and stop dates for each test
indicated?

4. Is the amount of time allotted for each
task sufficient to perform the task?

5. Will all prerequisite tasks be completed
before the task depending on them is
started?

i1Va \

Step 3:
Verification Testing

Verification testing is the most effective way to remove defects from software. If most
of the defects are removed prior to validation testing (i.e., unit, integration, system,
and acceptance testing), validation testing can focus on testing to determine whether
the software meets the true operational needs of the user and can be effectively inte-
grated into the computer operations activity.

Because the experience of many testers is limited to unit, integration, systems, and
acceptance testing, these testers are not experienced in verification techniques. The veri-
fication techniques are not complex, and once understood, can be easily implemented
into the test process.

Typically, verification testing—testing in a static mode—is a manual process. Verifi-
cation testing provides two important benefits: defects can be identified close to the
point where they originate, and the cost to correct defects is significantly less than
when detected in dynamic testing.

Verification testing normally occurs during the requirements, design, and program
phases of software development, but it can also occur with outsourced software. There
are many different techniques for verification testing, most of which focus on the docu-
mentation associated with building software. This chapter discusses the many different
ways to perform verification testing during the requirements, design, and programming
phases of software development.

291

292 Chapter 9

Overview

Most but not all verification techniques are manual. However, even in manual tech-
niques, automated tools can prove helpful. For example, when conducting a software
review, reviewers might want to use templates to record responses to questions.

Because most testing focuses on validation/dynamic testing, verification technique
names are not consist. Consider, for example, a review, which is an independent inves-
tigation of some developmental aspect. Some call these reviews System Development
Reviews, others call them End-of-Phase Reviews, still others refer to them as Peer
Reviews, and some use Requirements Review. Because some of the verification tech-
niques are similar, they may also be referred to as a walkthrough or inspection.

For the purposes of this chapter, specific names are assigned to the review techniques,
as follows:

m Reviews. A review is a formal process in which peers and/or stakeholders chal-
lenge the correctness of the work being reviewed. For example, in a requirements
review, the correctness and completeness of requirements is challenged. It is a
formal process usually based on the experience of the organization or outside
experts, and uses a predetermined set of questions to accomplish the objectives
of the review.

m Walkthroughs. A walkthrough is an informal process by which peers and other
stakeholders interact with project personnel to help ensure the best possible
project is implemented. Frequently, the walkthrough is requested by the project
team, to resolve issues that they are not sure they have resolved in the most
effective and efficient manner. For example, they may be uncertain that they
have the best design for a specific requirement and want an independent
process to “brainstorm” better methods.

m Inspections. Inspections are a very formal process in which peers and project
personnel assume very specific roles. The objective of an inspection is to ensure
that the entrance criteria for a specific workbench were correctly implemented
into the exit criteria. The inspection process literally traces the entrance criteria
to the exit criteria to ensure that nothing is missing, nothing is wrong, and
nothing has been added that was not in the entrance criteria.

m Desk debugging. This can be a formal or informal process used by a worker
to check the accuracy and completeness of his/her work. It is most beneficial
when the process is formalized so that the worker has a predefined series of
steps to perform. The objective is basically the same as an inspection, tracing
the entrance criteria to the exit criteria; unlike the inspection, however, it is
performed by the worker who completed the task.

m Requirements tracing. Requirements tracing, sometimes called quality func-
tion deployment (QFD), ensures that requirements are not lost during imple-
mentation. Once defined, the requirements are uniquely identified. They are
then traced from work step to work step to ensure that all the requirements
have been processed correctly through the completion of that process.

Step 3: Verification Testing 293

m Testable requirements. A testable requirement has a built-in validation tech-
nique. Incorporation of testable requirements is sometimes referred to as devel-
oping a “base case,” meaning that the method of testing all the requirements has
been defined. If you use this method, the requirements phase of software devel-
opment or contracting cannot be considered complete until the testable compo-
nent of each requirement has been defined. Some organizations use testers to
help define and/or agree to a test that will validate the requirements.

m Test factor analysis. This verification technique is unique to the test process
incorporated in this book. It is based on the test factors described in an earlier
chapter. Under this analysis, a series of questions helps determine whether
those factors have been appropriately integrated into the software develop-
ment process. Note that these test factors are attributes of requirements such
as ease of use.

m Success factors. Success factors are the factors that normally the customer/user
will define as the basis for evaluating whether the software system meets their
needs. Success factors correlate closely to project objectives but are in measur-
able terms so that it can be determined whether the success factor has been
met. Acceptance criteria are frequently used as the success factors.

m Risk matrix. The objective of a risk matrix is to evaluate the effectiveness of
controls to reduce those risks. (Controls are the means organizations use to
minimize or eliminate risk.) The risk matrix requires the identification of risk,
and then the matching of controls to those risks so an assessment can be made
as to whether the risk has been minimized to an acceptable level.

= Static analysis. Most static analysis is performed through software. For exam-
ple, most source code compilers have a static analyzer that provides informa-
tion as to whether the source code has been correctly prepared. Other static
analyzers examine code for such things as “non-entrant modules” meaning
that for a particular section of code there is no way to enter that code.

These techniques are incorporated into either the verification process of requirements,
design, or programming the software. However, just because a specific technique is
included in one phase of development does not mean it cannot be used in other phases.
Also, some of the techniques can be used in conjunction with one another. For example,
a review can be coupled with requirements tracing.

Objective

Research has shown that the longer it takes to find and correct a defect, the more costly
the correction process becomes. The objectives of verification testing during the require-
ments, design, and programming phases are twofold. The first is to identify defects as
close to the point were they originated as possible. This will speed up development and
at the same time reduce the cost of development. The second objective is to identify
improvement opportunities. Experienced testers can advise the development group of
better ways to implement user requirements, to improve the software design, and/or to
make the code more effective and efficient.

294 Chapter 9

Concerns

Testers should have the following concerns when selecting and executing verification
testing:

m Assurance that the best verification techniques will be used. The verification
technique can be determined during the development of the test plan or as
detailed verification planning occurs prior to or during an early part of the devel-
opmental phase. Based on the objectives to be accomplished, testers will select
one or more of the verification techniques to be used for a specific developmental
phase.

m Assurance that the verification technique will be integrated into a develop-
mental process. Development should be a single process, not two parallel
processes of developing and testing during implementation. Although two
processes are performed by potentially different groups, they should be care-
fully integrated so that development looks like a single process. This is impor-
tant so that both developers and testers know when and who is responsible for
accomplishing a specific task. Without this, developers may not notify testers
that a particular phase has begun or ended, or budget the developer’s time, so
that testers are unable to perform the verification technique. If verification has
been integrated into the developmental process, verification will be performed.

m Assurance that the right staff and appropriate resources will be available
when the technique is scheduled for execution. Scheduling the staff and fund-
ing the execution of the verification technique should occur in parallel with the
previous action of integrating the technique into the process. It is merely the
administrative component of integration, which includes determining who will
execute the technique, when the technique will be executed, and the amount of
resources allocated to the execution of the technique.

m Assurance that those responsible for the verification technique are ade-
quately trained. If testers who perform the verification technique have not
been previously trained, their training should occur prior to executing the veri-
fication technique.

m Assurance that the technique will be executed properly. The technique should
be executed in accordance with the defined process and schedule.

Workbench

Figure 9-1 illustrates the workbench for performing verification testing. The input to
the workbench is the documentation prepared by the development team for the phase
being tested. Near the end of the requirements, design, and programming phases, the
appropriate verification technique will be performed. The quality control procedures
are designed to ensure the verification techniques were performed correctly. At the end
of each development phase test, testers should list the defects they’ve uncovered, plus
any recommendations for improving the effectiveness and efficiency of the software.

DO | CHECK

REWORK

Task 1

Test During
Requirements
Phase
Documentation l Verification List of Defects
for the Phase Task 2 Technique and
Being Tested . Performed Recommendations
Test During Correctly

Design Phase

'

Task 3

Test During
Programming
Phase

I

Figure 9-1 The workbench for verification testing.

296 Chapter 9

Input

This section describes the inputs required to complete the verification testing during
each phase of development: requirements, design, and programming.

The Requirements Phase

The requirements phase is undertaken to solve a business problem. The problem and
its solution drive the system’s development process. Therefore, it is essential that the
business problem be well defined. For example, the business problem might be to
improve accounts receivable collections, reduce the amount of on-hand inventory
through better inventory management, or improve customer service.

The analogy of building a home illustrates the phases in a system’s development life
cycle. The homeowner’s needs might include increased living space, and the results of
the requirements phase offer a solution for that need. The requirements phase in build-
ing a home would specify the number of rooms, the location of the lot on which the
house will be built, the approximate cost to construct the house, the type of architec-
ture, and so on. At the completion of the requirements phase, the potential home-
owner’s needs would be specified. The deliverables produced from the homeowner’s
requirements phase would be a functional description of the home and a plot map of
the lot on which the home is to be constructed. These are the inputs that go to the archi-
tect to design the home.

The requirements phase should be initiated by management request and should
conclude with a proposal to management on the recommended solution for the busi-
ness need. The requirements team should study the business problem, the previous
methods of handling the problem, and the consequences of that method, together with
any other input pertinent to the problem. Based on this study, the team develops a
series of solutions. The requirements team should then select a preferred solution from
among these alternatives and propose that solution to management.

The most common deliverables from the requirements phase needed by the testers
for this step include the following:

m Proposal to management describing the problem, the alternatives, and propos-
ing a solution

m Cost/benefit study describing the economics of the proposed solution

m Detailed description of the recommended solution, highlighting the recom-
mended method for satisfying those needs. (Note: This becomes the input to
the systems design phase.)

m List of system assumptions, such as the life of the project, the value of the sys-
tem, the average skill of the user, and so on

The Design Phase

The design phase verification process has two inputs: test team understanding of how
design, both internal and external, occurs; and the deliverables produced during the
design phase that will be subject to a static test.

Step 3: Verification Testing

297

The design process could result in an almost infinite number of solutions. The sys-
tem design is selected based on an evaluation of multiple criteria, including available
time, desired efficiency, skill of project team, hardware and software available, as well
as the requirements of the system itself. The design will also be affected by the method-
ology and tools available to assist the project team.

In home building, the design phase equivalent is the development of blueprints and
the bill of materials for supplies needed. It is much easier to make changes in the early
phases of design than in later phases.

From a project perspective, the most successful testing is that conducted early in the
design phase. The sooner the project team becomes aware of potential defects, the
cheaper it is to correct those defects. If the project waited until the end of the design
phase to begin testing, it would fall into the same trap as many projects that wait until
the end of programming to conduct their first tests: When defects are found, the cor-
rective process can be so time-consuming and painful that it may appear cheaper to
live with the defects than to correct them.

Testing normally occurs using the deliverables produced during the design phase.
The more common design phase deliverables include the following:

Input specifications

Processing specifications

File specifications

Output specifications

Control specifications

System flowcharts

Hardware and software requirements

Manual operating procedure specifications

Data retention policies

The Programming Phase

The more common programming phase deliverables that are input for testing are as
follows:

Program specifications
Program documentation
Computer program listings
Executable programs
Program flowcharts

Operator instructions

In addition, testers need to understand the process used to build the program
under test.

298 Chapter 9

Do Procedures

Testers should perform the following steps during requirements phase testing:

1. Prepare a risk matrix.

2. Perform a test factor analysis.

3. Conduct a requirements walkthrough.
4. Perform requirements testing.
5

. Ensure requirements are testable.
Testers should perform the following steps during design phase testing:

1. Score success factors.
2. Analyze test factors.
3. Conduct design review.

4. Inspect design deliverables.
Testers should perform the following steps during programming phase testing:

1. Desk debug the program.
2. Perform programming phase test factor analysis.

3. Conduct a peer review.

Task 1: Test During the Requirements Phase

System development testing should begin during the requirements phase, when most
of the critical system decisions are made. The requirements are the basis for the sys-
tems design, which is then used for programming to produce the final implemented
application. If the requirements contain errors, the entire application will be erroneous.

Testing the system requirements increases the probability that the requirements will
be correct. Testing at this point is designed to ensure the requirements are properly
recorded, have been correctly interpreted by the software project team, are reasonable
when measured against good practices, and are recorded in accordance with the IT
department’s guidelines, standards, and procedures.

The requirements phase should be a user-dominated phase. In other words, the user
should specify the needs and the information services personnel should record the
needs and provide counseling about the alternative solutions, just as the builder and
architect would counsel the homeowner on building options. This means that the user,
being the dominant party, should take responsibility for requirements phase testing.

Having responsibility for testing does not necessarily mean responsibility for per-
forming the test. Performance of the test is different from the party having responsibil-
ity for the test—responsibility means the acceptance or rejection of the product based
on the test results.

Step 3: Verification Testing

299

If there are multiple users, responsibility may be assigned to a committee, which may
be the same committee that develops the requirements. One of the primary objectives of
testing during requirements is to ensure that the requirements have been properly stated
and recorded. Normally, only the user can look at recorded requirements and make that
determination. Therefore, it is important for the user to accept testing responsibility dur-
ing the requirements phase and to be an active participant in the test process.

People undertaking the test process must understand the requirements phase objec-
tives and then evaluate those objectives through testing. Should the requirements
phase be found inadequate as a result of testing, the phase should be continued until
requirements are complete. Without testing, inadequacies in the requirements phase
may not be detected.

Customarily, a management review occurs after the requirements phase is complete.
Frequently, this is done by senior management, who are not as concerned with the
details as with the economics and the general business solution. Unfortunately, inade-
quate details can significantly affect the cost and timing of implementing the proposed
solution.

The recommended test process outlined in this book is based on the 15 requirements
phase test factors and the test concerns for each factor (see the section “Requirements
Phase Test Factors”). The test team determines which of those factors apply to the
application being tested, and then conducts those tests necessary to determine whether
the test factor has been adequately addressed during the requirements phase. This
chapter defines the test factors and recommends tests to enable you to address the
requirements phase testing concerns.

Requirements Phase Test Factors

The following list provides a brief description of the 15 requirement phase test factors
(concerns):

m Requirements comply with methodology (methodology test factor). The
process used by the information services function to define and document
requirements should be adhered to during the requirements phase. The more
formal these procedures, the easier the test process. The requirements process
is one of fact gathering, analysis, decision making, and recording the require-
ments in a predefined manner for use in design.

m Functional specifications defined (correctness test factor). User satisfaction
can only be ensured when system objectives are achieved. The achievement
of these objectives can only be measured when the objectives are measurable.
Qualitative objectives—such as improving service to users—are not measurable
objectives, whereas processing a user order in four hours is measurable.

m Usability specifications determined (ease-of-use test factor). The amount of
effort required to use the system and the skill level necessary should be defined
during requirements. Experience shows that difficult-to-use applications or
features are not often used, whereas easy-to-use functional systems are highly
used. Unless included in the specifications, the ease-of-use specifications will
be created by default by the systems analyst or programmer.

300 Chapter9

m Maintenance specifications determined (maintainable test factor). The
degree of expected maintenance should be defined, as well as the areas where
change is most probable. Specifications should then determine the methods of
maintenance—such as user-introduced change of parameters—and the time
span in which certain types of maintenance changes need to be installed; for
example, a price change must be operational within 24 hours after notification
to information services.

m Portability needs determined (portable test factor). The ability to operate the
system on different types of hardware, to move it at a later time to another type
of hardware, or to move from version to version of software should be stated
as part of the requirements. The need to have the application developed as a
portable one can significantly affect the implementation of the requirements.

m System interface defined (coupling test factor). The information expected as
input from other computer systems, and the output to be delivered to other
computer systems, should be defined. This definition not only includes the
types of information passed, but the timing of the interface and the expected
processing to occur as a result of that interface. Other interface factors that may
need to be addressed include privacy, security, and retention of information.

m Performance criteria established (performance test factor). The expected effi-
ciency, economy, and effectiveness of the application system should be estab-
lished. These system goals are an integral part of the design process and, unless
established, default to the systems analyst/programmer. When this happens,
user dissatisfaction is almost guaranteed to occur with the operational system.
An end product of the requirements phase should be a calculation of the cost/
benefit to be derived from the application. The financial data should be devel-
oped based on procedures designed to provide consistent cost and benefit
information for all applications.

m Operational needs defined (ease-of-operations test factor). The operational
considerations must be defined during the requirements phase. This becomes
especially important in user-driven application systems. The processes that
must be followed at terminals to operate the system—in other words, the pro-
cedures needed to get the terminal into a state ready to process transactions—
should be as simple as possible. Central site operating procedures also need to
be considered.

m Tolerances established (reliability test factor). The expected reliability from
the system controls should be defined. For example, the requirements phase
should determine the control requirements for the accuracy of invoicing, the
percent of orders that need to be processed within 24 hours, and other such
concerns. An invoicing tolerance might state that invoices are to be processed
with a tolerance of plus or minus 1 percent from the stated current product
prices. If you don’t establish these tolerances, there is no basis to design and
measure the reliability of processing over an extended period of time. If you
don’t define an expected level of defects, zero defects are normally expected.
Controls to achieve zero defects are normally not economical. It is usually more
economical and to the advantage of the user to have some defects occur in pro-
cessing, but to control and measure the number of defects.

Step 3: Verification Testing

301

m Authorization rules defined (authorization test factor). Authorization require-

ments specify the authorization methods to ensure that transactions are, in fact,
processed in accordance with the intent of management.

File integrity requirements defined (file integrity test factor). The methods
of ensuring the integrity of computer files need to be specified. This normally
includes the control totals that are to be maintained both within the file and
independently of the automated application. The controls must ensure that the
detail records are in balance with the control totals for each file.

Reconstruction requirements defined (audit trail test factor). Reconstruction
involves both substantiating the accuracy of processing and recovery after an
identified problem. Both of these needs involve he retention of information to
backup processing. The need to substantiate processing evolves both from the
organization and regulatory agencies, such as tax authorities requiring that suf-
ficient evidential matter be retained to support tax returns.

Application management needs to state if and when the system recovery process
should be executed. If recovery is deemed necessary, management needs to state
the time span in which the recovery process must be executed. This time span
may change based upon the time of the day and the day of the week. These
recovery requirements affect the type and availability of data retained.

Impact of failure defined (continuity-of-processing test factor). The necessity
to ensure continuity of processing is dependent upon the impact of failure. If
system failure causes only minimal problems, ensuring continuous processing
may be unnecessary. On the other hand, where continuity of operations is
essential, it may be necessary to obtain duplicate data centers so that one can
continue processing should the other experience a failure.

Desired service level defined (service level test factor). Service level implies
response time based on the requirements. The service level required will vary
based on the requirements. Each level of desired service needs to be stated; for
example, there is a service level to process a specific transaction, a service level
to correct a programming error, a service level to install a change, and a service
level to respond to a request.

Access defined (security test factor). Security requirements should be devel-
oped showing the relationship between system resources and people. Require-
ments should state all of the available system resources subject to control, and
then indicate who can have access to those resources and for what purposes.
For example, access may be authorized to read, but not change, data.

At the conclusion of the testing, the test team can judge the adequacy of each of the
criteria, and thus of all the test concerns included in the test process for the require-
ments phase. The test team should make one of the following four judgments about
each criterion:

1.

Very adequate. The project team has done more than normally would be
expected for the criterion.

Adequate evaluation. The project team has done sufficient work to ensure the
reasonableness of control over the criterion.

302 Chapter 9

3. Inadequate assessment. The project team has not done sufficient work, and
should do more work in this criterion area.

4. Not applicable (N/A). Because of the type of application or the system design
philosophy by the organization, the implementation of this criterion is not
applicable to the application being reviewed.

Each test process contains a test that can be performed for each evaluation criterion.
The objective of the test is to assist the team in evaluating each criterion. The test
should be conducted prior to assessing the adequacy of the project being tested. It
should be noted that because of time limitations, review experience, and tests previ-
ously performed, the test team may choose not to assess each criterion.

The 15 test processes are recommended in Work Paper 9-1 as a basis for testing the
requirements phase. One test program is constructed to evaluate each of the require-
ments phase concerns. Work Paper 9-2 is a quality control checklist for this task.

Preparing a Risk Matrix

A risk matrix is a tool designed to assess the adequacy of controls in computer systems.
The term controls is used in its broadest context, meaning all the mechanisms, methods,
and procedures used in the application to ensure that it functions in accordance with the
intent of management. It is estimated that in automated systems, controls account for at
least one-half of the total developmental effort. Therefore, effort expended to ensure the
adequacy of controls is essential to the success and credibility of the application system.

One of the major benefits of the risk matrix is the identification of risks and what the
system must do for each of those risks. The risk matrix is primarily a design tool, but it
can be used as a test tool because it is infrequently used in the design process.

The risk matrix can be used in both the requirements phase and the design phase. The
following discussion explains how to use the risk matrix. Ideally, the risk matrix starts in
the requirements phase and is expanded and completed in the design phase. The execu-
tion of the risk matrix requires five actions. The actions should be performed in the fol-
lowing sequence.

Establishing the Risk Team

The key to a successful risk matrix is the establishment of the correct risk team, whose
responsibility will be to complete the matrix. The objective of completing the matrix is
to determine the adequacy of the control requirements and design to reduce the risks
to an acceptable level.

The risk team may be part of the requirements team or part of the test team, or it may
be a team specifically selected for the purpose of completing the risk matrix. The team
should consist of three to six members and at a minimum possess the following skills:

Knowledge of the user application
Understanding of risk concepts

Ability to identify controls

Step 3: Verification Testing 303

Familiarity with both application and information services risks
Understanding of information services concepts and systems design

Understanding of computer operations procedures

The candidates for the risk team should, at a minimum, include someone from the
user area and any or all of the following;:

Internal auditor
Risk consultant
Data processor
Security officer

Computer operations manager

Identifying Risks

The objective of the risk team is first to identify the application-oriented, not environ-
mental, risks associated with the application system. For example, the risks that relate to
all applications equally (for example, environmental risks) need not be identified unless
they have some special relevance to the applicants. The risk team can use one of the fol-
lowing two methods for risk identification:

1. Risk analysis scenario. In this method, the risk team “brainstorms” the poten-
tial application risks using their experience, judgment, and knowledge of the
application area. It is important to have the synergistic effect of a group so that
group members can challenge one another to develop a complete list of risks
that are realistic for the application.

2. Risk checklist. The risk team is provided with a list of the more common risks
that occur in automated applications. From this list, the team selects those risks
applicable to the application. In this method, the team needs fewer skills because
the risk list provides the stimuli for the process, and the objective of the team
is to determine which of the risks on the list are applicable to the application.
Figure 9-2 provides a list of risks for the purpose of identification.

Establishing Control Objectives (Requirements Phase Only)

During the requirements phase, the control objectives for each risk should be estab-
lished. These objectives define the acceptable level of loss for each of the identified
risks. Another way of stating the acceptable level of loss is the measurable objective for
control. When control can be stated in measurable terms, the controls to achieve that
objective have a requirement to use for control-decision purposes.

The adequacy of control cannot be tested until the acceptable level of loss from each
risk has been defined. Therefore, although the definition of the control objectives is a
user and project responsibility, it may take the formation of a risk team to get them
defined. After the control objectives have been defined, the requirements can be tested
to determine whether those objectives are achievable.

304 Chapter 9

1.
2.

CATEGORY: Uncontrolled System Access

Date or programs may be stolen from the computer room or other storage areas.

Information services facilities may be destroyed or damaged by either intruders
or employees.

Individuals may not be adequately identified before they are allowed to enter
the information services area.

Remote terminals may not be adequately protected from use by unauthorized
persons.

An unauthorized user may gain access to the system and an authorized user’s
password.

Passwords may be inadvertently revealed to unauthorized individuals. A user
may write his or her password in some convenient place, or the password may
be obtained from card decks, discarded printouts, or by observing the user as
he or she types it.

A user may leave a logged-in terminal unattended, allowing an unauthorized
person to use it.

A terminated employee may retain access to an information services system
because his or her name and password are not immediately deleted from
authorization tables and control lists.

An unauthorized individual may gain access to the system for his or her own
purposes (e.g., theft of computer services or data or programs, modification of
data, alteration of programs, sabotage, denial of services).

Repeated attempts by the same user or terminal to gain unauthorized access
to the system or to a file may go undetected.

1.

CATEGORY: Ineffective Security Practices for the Application

Poorly defined criteria for authorized access may result in employees not
knowing what information they, or others, are permitted to access.

The person responsible for security may fail to restrict user access to only those
processes and data which are needed to accomplish assigned tasks.

Large disbursements, unusual price changes, and unanticipated inventory
usage may not be reviewed for correctness.

Repeated payments to the same party may go unnoticed because there is no
review.

Sensitive data may be carelessly handled by the application staff, by the mail
service, or by other personnel within the organization.

Post-processing reports analyzing system operations may not be reviewed to
detect security violations.

Figure 9-2 List of generalized application risks.

Step 3: Verification Testing 305

CATEGORY: Ineffective Security Practices for the Application (continued)

7. Inadvertent modification or destruction of files may occur when trainees are
allowed to work on live data.

8. Appropriate action may not be pursued when a security variance is reported to
the system security officer or to the perpetrating individual’s supervisor; in fact,
procedures covering such occurrences may not exist.

CATEGORY: Procedural Errors at the Information Services Facility
Procedures and Controls

1. Files may be destroyed during database reorganization or during release of
disk space.

2. Operators may ignore operational procedures (for example, by allowing
programmers to operate computer equipment).

3. Job control language parameters may be erroneous.

4. An installation manager may circumvent operational controls to obtain
information.

5. Careless or incorrect restarting after shutdown may cause the state of a
transaction update to be unknown.

6. An operator may enter erroneous information at CPU console (e.g., control
switch in wrong position, terminal user allowed full system access, operator
cancels wrong job from queue).

7. Hardware maintenance may be performed while production data is online and
the equipment undergoing maintenance is not isolated.

8. An operator may perform unauthorized acts for personal gain (e.g., make extra
copies of competitive bidding reports, print copies of unemployment checks,
delete a record from a journal file).

9. Operations staff may sabotage the computer (e.g., drop pieces of metal into a
terminal).

10. The wrong version of a program may be executed.
11. A program may be executed twice using the same transactions.
12. An operator may bypass required safety controls.

13. Supervision of operations personnel may not be adequate during nonworking
hour shifts.

14. Due to incorrectly learned procedures, an operator may alter or erase the
master files.

15. A console operator may override a label check without recording the action in
the security log.

Figure 9-2 (continued)

306 Chapter9

1.
2.

13.
14.

CATEGORY: Procedural Errors at the Information Services Facility

Storage Media Handling

Critical tape files may be mounted without being write-protected.

Inadvertently or intentionally mislabeled storage media are erased. In a case
where they contain backup files, the erasure may not be noticed until the
backup is needed.

Internal labels on storage media may not be checked for correctness.
Files with missing or mislabeled expiration dates may be erased.

Incorrect processing of data or erroneous updating of files may occur when card
decks have been dropped, partial input decks are used, write rings are mistakenly
placed in tapes, paper tape is incorrectly mounted, or wrong tape is mounted.

Scratch tapes used for jobs processing sensitive data may not be adequately
erased after use.

Temporary files written during a job step for use in subsequent steps may be
erroneously released or modified through inadequate protection of the files or
because of an abnormal termination.

Storage media containing sensitive information may not get adequate protection
because operations staff is not advised of the nature of the information content.

Tape management procedures may not adequately account for the current
status of all tapes.

Magnetic storage media that have contained very sensitive information may
not be degaussed before being released.

Output may be sent to the wrong individual or terminal.

Improperly operating output or post-processing units may result in loss of
output.

Surplus output material may not be disposed of properly.

Tapes and programs that label output for distribution may be erroneous or not
protected from tampering.

1.

CATEGORY: Program Errors

Records may be deleted from sensitive files without a guarantee that the
deleted records can be reconstructed.

Programmers may insert special provisions in programs that manipulate data
concerning themselves (e.g., payroll programmer may alter his or her own
payroll records).

Figure 9-2 (continued)

Step 3: Verification Testing 307

CATEGORY: Program Errors (continued)

3. Data may not be stored separately from code with the result that program
modifications are more difficult and must be made more frequently.

4. Program changes may not be tested adequately before being used in a
production run.

5. Changes to a program may result in new errors because of unanticipated
interactions between program modules.

6. Program acceptance tests may fail to detect errors that only occur for unusual
combinations of input (e.g., a program that is supposed to reject all except a
specified range of values actually accepts an additional value).

7. Programs, the contents of which should be safeguarded, may not be identified
and protected.

8. Code, test data with its associated output, and documentation for certified
programs may not be filed and retained for reference.

9. Documentation for vital programs may not be safeguarded.

10. Programmers may fail to keep a change log, to maintain backup copies, or to
formalize recordkeeping activities.

11. An employee may steal programs he or she is maintaining and use them for
personal gain.

12. Poor program design may result in a critical data value being initialized twice.
An error may occur when the program is modified to change the data value—
but only changes it in one place.

13. Production data may be disclosed or destroyed when it is used during testing.

14. Errors may result when the programmer misunderstands requests for changes
to the program.

15. Errors may be introduced by a programmer who makes changes directly to
machine code.

16. Programs may contain routines not compatible with their intended purpose,
which can disable or bypass security protection mechanisms. For example, a
programmer who anticipates being fired inserts code into a program that will
cause vital system files to be deleted as soon as his/her name no longer
appears in the payroll file.

17. Inadequate documentation or labeling may result in the wrong version of
program being modified.

Figure 9-2 (continued)

308 Chapter 9

1.
2.

CATEGORY: Operating System Flaws

User jobs may be permitted to read or write outside assigned storage area.

Inconsistencies may be introduced into data because of simultaneous
processing of the same file by two jobs.

An operating system design or implementation error may allow a user to
disable audit controls or to access all system information.

An operating system may not protect a copy of information as thoroughly as it
protects the original.

Unauthorized modification to the operating system may allow a data entry
clerk to enter programs and thus subvert the system.

An operating system crash may expose valuable information such as password
lists or authorization tables.

Maintenance personnel may bypass security controls.

An operating system may fail to record that multiple copies of output have
been made from spooled storage devices.

An operating system may fail to maintain an unbroken audit trail.

When restarting after a system crash, the operating system may fail to ascertain
that all terminal locations that were previously occupied are still occupied by
the same individuals.

A user may be able to get into monitor or supervisory mode.

The operating system may fail to erase all scratch space assigned to a job after
the normal or abnormal termination of the job.

Files may be allowed to be read or written without having been opened.

3.

CATEGORY: Communication System Failure
Accidental Failures
1.
2.

Undetected communications errors may result in incorrect or modified data.
Information may be accidentally misdirected to the wrong terminal.

Communication nodes may leave unprotected fragments of messages in
memory during unanticipated interruptions in processing.

Communication protocols may fail to positively identify the transmitter or
receiver of a message.

Figure 9-2 (continued)

Step 3: Verification Testing 309

CATEGORY: Communication System Failure (continued)
Intentional Acts
1. Communication lines may be monitored by unauthorized individuals.

2. Data or programs may be stolen via telephone circuits from a remote job entry
terminal.

3. Programs in the network switching computers may be modified to
compromise security.

4. Data may be deliberately changed by individuals tapping the line.

5. An unauthorized user may “take over” a computer communication port as an
authorized user disconnects from it. Many systems cannot detect the change.
This is particularly true in much of the currently available communication
protocols.

If encryption is used, keys may be stolen.
A terminal user may be “spoofed” into providing sensitive data.
False messages may be inserted into the system.

True messages may be deleted from the system.

S v ® N O

Messages may be recorded and replayed into the system.

Figure 9-2 (continued)

Table 9-1 shows an example risk matrix at the end of the requirements phase for a typ-
ical billing and distribution system. This matrix lists four risks for the billing and distri-
bution system and lists control objectives for each of those risks. For example, one of the
risks is that the product will be shipped but not billed. In this instance, the control objec-
tive is to ensure that all shipments are billed. In other words, the acceptable level of loss
for this risk is zero, and the project team must install a system that ensures that for each
shipment leaving the distribution area an invoice will be prepared. However, note that
the next risk is that the product will be billed at the wrong price or quantity and that the
controls have a greater than zero level of loss established, as do the other two risks.

Table 9-1 Requirements Phase Risk Matrix Example

RISK CONTROL OBJECTIVE

Shipped but not billed Ensure all shipments are billed.
Billed for wrong quantity Bill at current price on 99 percent of line items and or
price have error pricing less than plus or minus 10 percent.

Billed to wrong customer Reduce incorrect billings to less than 0.1 percent of
invoices.

Shipped wrong product Ship correct product and quantity on 99 percent of or
quantity line items.

310 Chapter 9

Identifying Controls in Each System Segment

The following are the common system segments:

m Origination. The creation of the source document plus the authorization asso-
ciated with that transaction origination.

m Data entry. The transfer of information to machine-readable media.

m Communication. The movement of data from one point in the system to
another. Movement may be manual or electronic.

m Processing. Application of the system logic to the data.

m Storage. The retention of data, for both temporary and extended periods of
time.

m Output. The translation of data from computer media to media understandable
and usable by people.

m Use. Satisfaction of the business need through the results of system processing.

The risk team determines which controls are applicable to which risk and records
them in the correct segment of the system. At the conclusion of the development of the
risk matrix, the risk team assesses whether the controls are adequate to reduce the risk to
the acceptable level identified in the control objective. This will test the adequacy of the
controls at the conclusion of the design process. An example of a risk matrix for billing
and distribution systems at the end of the design phase is illustrated in Table 9-2.

The same four risks that were identified during the requirements phase (refer to
Table 9-1) are listed on this matrix also, as are the controls associated with each risk. In
this example, the shipped-but-not-billed risk shows that three controls (1, 2, and 3) will
help reduce that risk. (Note that for an actual matrix these controls must be described.)
The matrix shows in which segment of the application system those controls reside.
After the controls have been identified and recorded, the risk team must determine
whether those three controls and the segments in which they exist are adequate to
reduce the shipped-but-not-billed risk to the point where all shipments will be billed.

Determining the Adequacy of Controls

The test concludes when the risk team assesses whether controls are adequate to
reduce each identified risk to an acceptable level.

Performing a Test Factor Analysis

Work Paper 9-1 provides a process to assess the concerns associated with the require-
ments phase of the system’s development life cycle. A test program is included for each
concern. There are 15 concerns, covering each phase of the development process. For
each concern, there is a test program comprising eight criteria. The test program lists
those criteria that, if proved to be adequately addressed through testing, should ensure
the test team that the concern is minimal.

Table 9-2 Design Phase Risk Matrix Example

SYSTEM DATA
SEGMENT RISK ORIGINATION ENTRY COMMUNICATION PROCESSING STORAGE OUTPUT USE
Shipped but not billed 1 2 6
Billed for wrong 6 7 10 11
quantity or price 8

9
Billed to wrong 12 14 15 16
customer 3
Shipped wrong 17 18 19 21 22

product or quantity 20

312

Chapter 9

The test team must perform sufficient testing to evaluate the adequacy with which the
project team has handled each of the test criteria. For example, in the requirements phase,
one test criterion is “Have the significant financial fields been identified?” To determine
that the project team has adequately addressed this criterion, the test team conducts such
tests as necessary to assure themselves that the significant financial fields have been
identified. The testing may require fact finding in the accounting department to verify
that the fields indicated as financial fields are complete.

Conducting a Requirements Walkthrough

The requirements phase involves creativity, experience, and judgment, as well as a
methodology to follow. During this phase, the methodology helps, but it is really cre-
ativity and problem solving that is needed. Of the review processes, the walkthrough is
the least structured and the most amenable to creativity. Therefore, the walkthrough
becomes a review process that complements the objectives of the requirements phase.
The objective of the walkthrough is to create a situation in which a team of skilled indi-
viduals can help the project team in the development of the project solutions. The walk-
through attempts to use the experience and judgment of the review team as an adjunct
or aid in the developmental process. The walkthrough in the requirements phase is ori-
ented toward assistance in problem solving as opposed to compliance to methodology.
The walkthrough involves five actions to be completed in the sequence listed below.
The amount of time allocated to each step will depend on the size of the application
being reviewed and the degree of assistance desired from the walkthrough team.

Establishing Ground Rules

The walkthrough concept requires that the project participants make a presentation
explaining the functioning of the system as developed at the time of the presentation.
The presentation, or reading of the requirements, is the vehicle for initiating discussion
between the project team and the walkthrough team. The prime objective is to elicit
questions, comments, and recommendations.

The walkthrough is most productive when ground rules are established before the
actual walkthrough. The ground rules should be understood by both the project team
and the walkthrough team and should normally include the following;:

m Size and makeup of the walkthrough team (Three to six skilled participants is a
good size. Three members are needed to get sufficient perspective and discus-
sion, but more than six members makes the process too large and unwieldy.)

m Responsibility of the walkthrough team, which is usually limited to recommen-
dations, comments, and questions.

m Obligation of the project team to answer all questions and respond to recom-
mendations.

m Approximate length, time, and location of the walkthrough.
m Confidentiality of information discussed at the walkthrough.

m Non-negotiable aspects of the system.

Step 3: Verification Testing 313

Who will receive the results of the walkthrough and how are those results to be
used? (For example, if a report is to be prepared, who will receive it, what is the
purpose of the report, and what is the most likely action based on that report?)

Selecting the Team

The ground rules establish the size and makeup of the team. The ground rules are nor-
mally generic in nature, and must be converted into action. For example, if the ground
rules say that the team should consist of two members of user management and two
project leaders, the most appropriate individuals must then be selected.

The walkthrough team should be selected based on the objectives to be accom-
plished. Any of the involved parties (i.e., users, information services, and senior man-
agement) may want to recommend walkthrough team participants. These tend to be
selected based on project concerns. For example, if operations is a major concern, oper-
ations people should be selected for the walkthrough team.

The most common participants on a walkthrough team include the following;:

Information services project manager/systems analyst.

Senior management with responsibility over the computerized area.
Operations management.

User management.

Consultants possessing needed expertise. (The consultants may be from inside
or outside the corporation. For example, the consultants may be internal audi-
tors, database administrators, or independent computer consultants.)

A good review team has at least one member of user management, one senior mem-
ber of information services, and one member of senior management. Additional par-
ticipants can be added as necessary.

The team participants should be notified as soon as possible that they have been
selected for the walkthrough and advised of the responsibility and time commitments
and the date for the walkthrough. Generally, if people do not want to participate in the
walkthrough, they should be relieved of that responsibility and another person selected.
If a team participant has a scheduling conflict and cannot complete the review in time, it
may be more advisable to change the time of the review than to lose the participant.

Presenting Project Requirements

The project personnel should present the project requirements to the walkthrough team.
A good walkthrough includes a presentation of the following:

Statement of the goals and objectives of the project.

Background information, including appropriate statistics on the current and
proposed application area. (Note that these statistics should be business statis-
tics and not computer system statistics.)

List of any exceptions made by the project team.

Discussion of the alternatives considered and the alternative selected.

314

Chapter 9

m A walkthrough of the requirements using representative transactions as a base-
line. (Rather than describing the system, it is better to select the more common
transaction types and explain how those transactions will be processed based
on the defined requirements.)

Responding to Questions/Recommendations

The project presentation should be interrupted with questions, comments, and recom-
mendations as they occur to the walkthrough team. The objective of the walkthrough
is to evoke discussion and not to instruct the walkthrough team on the application
requirements. The project team should be prepared to deviate from any presentation
plan to handle questions and recommendations as they occur.

It is generally good to appoint one person as recorder for the walkthrough. This is nor-
mally a member of the project team. The recorder’s duty is to capture questions for
which appropriate answers are not supplied during the walkthrough, and to indicate
recommendations for which acceptance and implementation are possible.

Issuing the Final Report (Optional)

The ground rules determine whether a report will be issued, and if so, to whom. How-
ever, if it is determined that a walkthrough report should be issued, responsibility
should be given to a single person to write the report. State in advance to whom the
report is to be issued. The entire walkthrough team should agree on the contents of the
report; if they do not, the report should state minority opinions. The information cap-
tured by the recorder may prove valuable in developing the report. To be most valu-
able to the project team, the report should be issued within five days of the
walkthrough.

Performing Requirements Tracing

Requirements tracing is a simple but difficult-to-execute concept. The objective is to

uniquely identify each requirement to be implemented, and then determine at each

checkpoint whether that requirement has been accurately and completely processed.
Requirements tracing requires the following three actions:

1. Uniquely identify each requirement. The identification process can be as sim-
ple as 1 through X, or requirements can be named or any other method chosen
that can uniquely identify the requirement. The end process of this step is a
detailed listing of all the requirements (see the requirements tracing matrix in
Figure 9-2).

2. Identify the development checkpoints at which requirements will be traced.
In most developmental processes, requirements will be traced at predefined
checkpoints. For small projects, the checkpoints may be at the end of a phase,
whereas in larger projects, sub-phases might require checkpoints. The check-
points will be incorporated into the requirements tracing matrix. Note that in
this matrix five checkpoints have been listed (a, b, ¢, d, e) as well as four
requirements (1, 2, 3, 4).

Step 3: Verification Testing

315

3. Check that the requirements have been accurately and completely imple-
mented at the end of a checkpoint. Use the requirements tracing matrix to inves-
tigate whether the identified requirements have been accurately and correctly
implemented at the end of a specific checkpoint. In Figure 9-3, for example, at
developmental checkpoint A, a decision would be made as to whether require-
ments 1, 2, 3, and 4 have been accurately and correctly implemented. If they have
not been, the developmental team must make the necessary corrections.

Ensuring Requirements Are Testable

Many believe this is one of the most valuable verification techniques. If requirements
are testable, there is a high probability that they will, in fact, meet the user needs as
well as simplify implementation. Ideally, users of the requirement would develop the
means for validating whether the requirement has been correctly implemented. For
example, if there was a requirement that customers could not exceed their credit limit
on purchases, the users might define three tests that test below the credit limit, at the
credit limit, and above the credit limit.

Ensuring that requirements are testable requires only that some stakeholder
develop the means for testing the requirement. As previously discussed, ideally this is
the user. However, some users do not have the background necessary to develop the
test conditions without the assistance of someone experienced in creating test data.
Note that developing testable requirements is very similar to a concept called “use
cases.” A use case is a case that tests how the outputs from the software will be used by
the operating personnel.

Use cases are helpful in three ways:

m Testing that requirements are accurately and completely implemented

m Assisting developers in implementing requirements because the implementers
will know how the outputs will be used

m Developing cases for the acceptance testing of the software by the users

Development
Phase Checkpoints

Name of Software
Requirements

3

4

Figure 9-3 Requirement tracing matrix.

316

Chapter 9

Task 2: Test During the Design Phase

During the design phase, the user and the system designer must work together closely.
Neither party should be dominant during this period, the phase during which the user-
defined requirements are converted into a process that can be accomplished by a com-
puter. It is important that both the user and system designer work as partners to develop
not only an efficient application system, but also one that is acceptable to the user.

Testing during the design phase should be jointly shared by the user and the infor-
mation services project team. If the team consists of both users and IT personnel, the
project team can accept test responsibility.

The system design is an IT responsibility. It is therefore logical to assume that IT
should accept responsibility for the adequacy of that design, and thus have test respon-
sibility. Unfortunately, this logic shifts responsibility from the user to information ser-
vices. The danger is that the system may become information services’ system, as
opposed to the user’s system. When the user is involved in establishing test criteria,
the ultimate responsibility for the application is more clearly established.

The design phase provides the opportunity to test the structure (both internal
and external) of the software application. The greater the assurance of the project team
that the structure is sound and efficient, the higher the probability that the project will
succeed.

Current test tools permit the structure to be tested in both a static and a dynamic
mode. It is possible through modeling and simulation to model the structure on the
computer to analyze the performance characteristics of the structure. However, the
testing concepts must be developed hand in hand with the design process to gain max-
imum test advantages. State testing of the adequacy of the design has proved to be
effective.

The design phase can be viewed as a funnel that takes the broad system require-
ments at the wide end of the funnel and narrows them down through a design process
to very detailed specifications. This is a creative phase of the life cycle. Along with this
creativity is a concern that some important design aspects will be overlooked.

Understanding design phase concerns produces more effective testing. Testing can
then be directed at specific concerns instead of attempting broad-based testing.

Scoring Success Factors

Scoring is a predictive tool that utilizes previous systems experience. Existing systems
are analyzed to determine the attributes of those systems and their correlation to the
success or failure of that particular application. When attributes that correlate to suc-
cess or failure can be identified, they can be used to predict the behavior of systems
under development.

Attributes of an effective scoring tool are as follows:

m Sampling. The criteria that represent a sample of all the criteria involved in the
implementation of an automated application system. The sampling criteria are
not meant to be complete.

Step 3: Verification Testing 317

m High positive correlation. The criteria picked will have shown a high positive
correlation in the past with either success or failure of an automated applica-
tion. These criteria should not be judgmental or intuitive, but rather, those
criteria for which it can be demonstrated that the absence or presence of that
attribute has shown a high correlation to the outcome of the project.

m Ease of use. To be effective, the process of scoring must be simple. People
will use an easy predictive concept, but will be hesitant to invest significant
amounts of time and effort.

m Develop risk score. The score for each attribute should be determined in a
measurable format so that a total risk score can be developed for each applica-
tion. This will indicate the degree of risk, the area of risk, and a comparison of
risk among application systems.

The scoring test tool is prepared for use in evaluating all applications. The tool should
be general in nature so that it will apply to diverse applications, because the degree of
risk must be compared against a departmental norm.

The scoring tool can be used in one of the following two ways under the direction of
the test team:

1. Project leader assessment. The application project leader can be given the scor-
ing mechanism and asked to rate the degree of risk for each of the attributes for
his or her project. The project leader need not know the importance of any of
the attributes in a risk score, but only needs to measure the degree of project
risk based on his or her in-depth knowledge of the project.

2. Test team assessment. A member of the test team can be assigned the responsi-
bility to develop the risk score. If the test team has worked on the project from
the beginning, that person may be knowledgeable enough to complete the scor-
ing instrument. However, if the test team member lacks knowledge, investiga-
tion may be needed to gather sufficient evidence to score the project.

At the conclusion of the scoring process, the result can be used in any of the follow-
ing ways:

m Estimate extent of testing. The higher the risk, the more testing that manage-
ment may desire. Knowing that an application is high risk alerts management
to the need to take those steps necessary to reduce that risk to an acceptable
level.

m Identify areas of test. Depending on the sophistication of the scoring instru-
ment, specific areas may be identified for testing. For example, if computer
logic is shown to be high risk, testing should thoroughly evaluate the correct-
ness of that processing.

m Jdentify composition of test team. The types of risks associated with the appli-
cation system help determine the composition of the test team. For example, if
the risks deal more with technology than with logic, the test team should
include individuals thoroughly knowledgeable in that technology.

318 Chapter 9

A scoring instrument for application systems is presented in Work Paper 9-3 at the end
of the chapter. This scoring instrument develops a computer application system profile
on many different system characteristics/attributes. The user is then asked to determine
whether the system being reviewed is high, medium, or low risk for the identified char-
acteristic. For example, the first characteristic deals with the importance of the function
being computerized. If that function is important to several organizational units, it is a
high-risk application. If the requirements are only of limited significance to cooperating
units, the risk drops to medium; if there are no significant conflicting needs and the
application is primarily for one organizational unit, the risk is low. The person doing the
assessment circles the appropriate indicator. At the conclusion, a score can be developed
indicating the number of high-risk, medium-risk, and low-risk indicators.

A risk score is achieved by totaling the number of characteristics rated high,
medium, and low, respectively, and then multiplying each of these totals by the risk
factor (high = 3, medium = 2, low = 1) to arrive at a risk score. The three resulting risk
score numbers are then added together to arrive at a total risk score, which you can use
to compare application systems against a norm. Another way to use the information is
to divide the total score by the total number of risk characteristics to obtain a score
between one and three. The closer the score is to three, the higher the risk, and con-
versely, the lower the score, the lower the risk.

Analyzing Test Factors

Work Paper 9-4 contains a test process for each of the design phase test factors. The per-
son conducting the test can select the concerns of interest and use the appropriate test
programs, keeping in mind the following general objectives for the design phase:

m Develop a solution to the business problem.

Determine the role of the computer in solving the business problem.

Develop specifications for the manual and automated segments of the system.
Comply with policies, procedures, standards, and regulations.

Define controls that will reduce application risks to an acceptable level.

Complete the project within budgetary, staffing, and scheduling constraints.
The concerns to be analyzed during the design phase are as follows:

m Data integrity controls designed. Data integrity commences with risk identifi-
cation, followed by management decisions on the acceptability of that risk,
stated in terms of the amount of loss acceptable. The data integrity controls are
then designed to these risk-tolerance specifications.

m Authorization rules designed. Authorization in automated systems may be
manual and/or automated. The procedures for manual authorization should
be specified during the design phase. Automated authorization methods must
be specified in more detail than manual procedures because they cannot rely on
people to react to unexpected situations.

Step 3: Verification Testing 319

m File integrity controls designed. File integrity is ensured by file identification
methods, automated file controls, and independently maintained file integrity
controls. The specifications for this three-part integrity process must be deter-
mined during the design phase.

m Audit trail designed. The audit trail provides the capability to trace transac-
tions from their origination to control totals, and to identify all the transactions
substantiating a control total. In addition, the audit trail is used to substantiate
individual transaction processing, and to recover the integrity of computer
operations after it has been lost. Frequently, governmental agencies specify the
types of information that need to be retained for audit trail purposes—this
information must be defined during the design phase. The audit trail should
be designed to achieve those purposes.

m Contingency plan designed. The contingency plan outlines the actions to be
performed in the event of problems. This plan includes the manual methods to
be followed while the automated applications are not in operation, the backup
and recovery procedures, as well as physical site considerations. Contingency
plan specifications should be outlined during the design phase.

m Method to achieve service level designed. The requirements phase defined the
service levels to be achieved during the operation of the application. This con-
cern deals primarily with the performance of the system and its ability to sat-
isfy user needs on a timely basis.

m Access procedures defined. Security in an automated system is achieved by
predefining who can have access and for what purpose and then enforcing
those access rules. A security profile indicates who can have access to what
resources.

m Design complies with methodology. The system design process should be
performed and documented in accordance with IT methodology. Standardized
design procedures ensure ease of understanding by all parties trained in that
methodology, and at the same time help ensure the completeness of the design
process. The purpose of the methodology is to develop better systems at a
lower cost.

m Design conforms to requirements. The system design is a translation of the
user requirements into detailed system specifications. During any translation,
misunderstandings or misinterpretations can occur. Steps need to be taken
to ensure that the completed design achieves the objectives and intent of the
defined requirements.

m Design facilitates use. The final product must be used by people. The easier
the system is to use, the more likely that the features will be utilized and the
transactions processed correctly. The design must take into consideration the
skill levels and job motivation of the people using the application system.

m Design is maintainable. The cost of maintaining a computer application nor-
mally far exceeds the cost to develop. Identifying those system aspects that are
most likely to be changed and building those parts of the system for ease of

320 Chapter 9

maintenance is an important aspect of the design process. The system design
needed for maintainability may change significantly depending on the expected
frequency of change.

m Design is portable. If the requirements indicate that the application system
should be transferable from one piece of hardware to another or from one ver-
sion of software to another, the design should incorporate those portability fea-
tures. When future hardware and software is uncertain, the design should be
generalized, and not attempt to take advantage of features or facilities of exist-
ing hardware and software.

m Interface design is complete. The interface to other applications needs to be
identified and the specifications for that interface designed. Interface specifica-
tions should also consider secondary uses of application information. Under-
standing these secondary uses may result in additional capabilities included
within the design process.

m Design fulfills criteria. The cost/benefit study performed during the require-
ments phase may not supply a high-precision evaluation. During the design
phase, the performance estimates can be more accurately stated so that a better
prediction can be made as to whether the performance criteria can be achieved.
A guideline used by one corporation is that the accuracy of estimating the
achievement of the performance criteria at the end of the design phase should
be within plus or minus 10 percent.

m Needs communicated to operations. Operations needs to identify future pro-
cessing requirements to prepare to handle those requirements when the system
becomes operational. The larger the processing requirements, the greater the
need to involve operations in the design alternative considerations.

A detailed work program is provided for each of the 15 design phase test concerns.
These work programs follow and outline the criteria to be assessed for each concern,
together with the recommended test, test technique, and test tool to be used in evaluat-
ing each criterion. Note that the person conducting the test should use judgment regard-
ing the extent of testing relative to the importance of the criteria to the application.

Conducting a Design Review

The design review is structured using the same basic information that formed the basis
for scoring. However, in the case of the design review, the criteria is more specific. The
objective is to pre-identify those attributes of design that correlate to system problems.
The design review then investigates those attributes to determine that they have been
appropriately addressed by the project team.

The design review is conducted by a team knowledgeable in the design process. They
are responsible for reviewing the application system for completeness and reasonable-
ness. It is not necessary that the team be knowledgeable about the specific application,
but they must be knowledgeable about the design methodology.

In conducting a design review, the team follows a predetermined review process.
The design review is normally formal and highly structured in nature, in that the

Step 3: Verification Testing 321

review team has predetermined investigations to make and has known start and stop
points. The design review normally follows the design methodology. Team members
attempt to determine that all the tasks have been properly performed. At the conclu-
sion of the design review, the team normally issues a formal report indicating their
findings and recommendations about the project.

The design review team may consist of the following members:

m Project personnel. The project personnel can conduct their own design review.

Typically, the individual on the project who is assigned review responsibility is
not the same person that actually designed the system; however, the reviewer
may have had partial design responsibility. This requires team members to
accept different roles and responsibilities during the review process than they
have held during the design process. Because of the possible ties to the actual
design of the system, having the design review checklist as a self-assessment
tool normally fulfills a valuable function for the reviewer(s).

Independent review team. The members of this review team are not members
of the project being reviewed. They can be from other projects or quality-
assurance groups, or they can be professional testers. This mode of operation
provides a greater degree of independence in conducting the review in that
there is no conflict of interest between the design and review roles. On the
other hand, it is frequently difficult for peers to be critical of each other, espe-
cially in situations where a reviewer might eventually work for the person
being reviewed.

These general guidelines should be followed when conducting a review:

1.

Select the review team. The members of the review team should be selected in
advance of the review process.

Train the review team members. The individuals who will be conducting the
review should be trained in how to conduct the review. At a minimum, this
means reviewing the checklist and explaining the objective and intent of each
question. It is also advisable to train the people in the interpersonal relation-
ships involved in conducting a review so that the review can be held in a
non-threatening environment.

Notify the project team. The project team should be notified several days in
advance of the review as to when the review will occur and the responsibility
of the project team during the review. Obviously, if the project team conducts
the review, this task is less important, but it is still necessary to formally sched-
ule the review so that all members will be present.

Allot adequate time. The review should be conducted in a formal, businesslike
manner, as efficiently as possible, but should not be rushed. Sufficient time
should be allocated to probe and investigate areas of concern. Even when the
same people conduct the review that designed the system, the interpersonal
relationships and synergistic effect of a review can produce many positive
effects if sufficient time is allocated to enable appropriate interaction.

322 Chapter 9

5. Document the review facts. All the factual findings of the review should be
recorded. Normally, this can be done on the review checklist unless the com-
ments are lengthy or supporting evidence is required. In any case, facts should
be referenced to the specific checklist questions that uncovered them.

6. Review the facts with the project team. The correctness of the facts should be
substantiated with all individuals involved, and the review should not proceed
until this is done. It is better to do this at the end of the review for important
findings than intermittently during the review process.

7. Develop review recommendations. Based on the facts, the review team should
offer their recommendations to correct any problem situation. These recommen-
dations are an important part of the review process.

8. Review recommendations with the project team. The project team should be
the first to receive the recommendations and have an opportunity to accept,
modify, or reject the recommendations.

9. Prepare a formal report. A report documenting the findings, the recommenda-
tions, and the action taken or to be taken on the recommendations should be
prepared. This report may or may not be sent to higher levels of management,
depending on the review ground rules established by the organization. How-
ever, it is important to have a formal record of the review process, what it
found, and the actions taken on recommendations.

One or more reviews may occur during the design phase. The number of reviews will
depend on the importance of the project and the time span of the design phase. A pro-
gram for a two-point design phase review is shown in Work Papers 9-5 and 9-6. This pro-
vides for the first review at the end of the business system design (Work Paper 9-5) that
part of the design where it is determined how the business problem will be solved. The
second review point would occur after the computer system design (Work Paper 9-6) is
complete. Note that the questions in the two review checklists are taken from an actual
organization’s review process, and therefore may not be applicable to all organizations.
Normally, the review process needs to be customized based on the design methodology,
information services policies and procedures, and the criteria found to be causing prob-
lems in the organization.

Inspecting Design Deliverables

Inspection is a process by which completed but untested design products are evalu-
ated as to whether the specified changes were installed correctly. To accomplish this,
inspectors examine the unchanged product, the change specifications, and the
changed product to determine the outcome. They look for three types of defects: errors,
meaning the change has not been made correctly; missing, meaning something that
should have been changed, but was not changed; and extra, meaning something not
intended was changed or added.

The inspection team reviews the product after each inspector has reviewed it individ-
ually. The team then reaches a consensus on the errors, missing, and extra defects. The
author (the person implementing the project change) is given those defect descriptions

Step 3: Verification Testing

323

so that the product can be changed prior to dynamic testing. After the changes are made,
they are re-inspected to verify correctness; then dynamic testing can commence. The pur-
pose of inspections is twofold: to conduct an examination by peers, which normally
improves the quality of work because the synergy of a team is applied to the solution;
and to remove defects.

The following items can enhance the benefits of formal inspections:

m Training. Use inspections to train new staff members in the department’s stan-
dards and procedures.

m Product quality. Do not inspect obviously poor products; that is, the inspectors
should not do the developers” work. Developers should not submit a product
for inspection if they are not satisfied with the quality of the product.

Work Paper 9-7 is a quality control checklist for this task.

Task 3: Test During the Programming Phase

Building an information system (i.e., programming) is purely an IT-related function,
with little need for user involvement, except where questions arise about design spec-
ifications and/or requirements.

Wherever possible, changes requested by users should be discouraged through
more complete design reviews, or postponed until the system is placed into operation.
If changes cannot be postponed, they should be implemented through the regular
development process and (preferably) tested before changing the original program
specifications.

The complexity of performing the programming phase depends on the thorough-
ness of the design phase and the tool used to generate code. Well-defined and measur-
able design specifications greatly simplify the programming task. On the other hand,
the failure to make decisions during the early phases necessitates those decisions being
made during the programming phase. Unfortunately, if not made earlier, these deci-
sions may be made by the wrong individual—the programmer.

Testing during the programming phase may be static or dynamic. During most of the
phase, programs are being specified, designed, and coded. In this phase, the resultant
code may not be executable, and therefore may require different test tools. The efficiency
gained from early testing is just as appropriate to the programming phase as it is to other
phases. For example, problems detected during program design can be corrected more
economically than if they are detected while testing the executable program.

.mﬂ] The importance of testing programs will vary based on the means of
code generation. The more automated code generation becomes, the less
emphasis needs to be placed on programming phase testing. Because many
organizations use a variety of methods for code generation, this verification
task is designed to incorporate all the programming phase components needed.
The user of this test process must adjust this task according to the method
used to generate code.

324

Chapter 9

The programming phase consists of three segments: The program specifications are
written from the design specifications; a programmer con- verts the program specifi-
cations into machine-executable instructions; and then the programmer verifies that
these instructions meet the program specifications.

The programming equivalent in home construction is the building of the house by
masons, carpenters, plumbers, and electricians. These are the craftsmen who take the
design specifications and materials and convert them into the desired product. How-
ever, just as aids are available to the programmer, aids are also available to the con-
struction worker. For example, preconstructed roof trusses and other parts of the house
can be purchased. The more pieces that can be produced automatically, the greater the
probability of a successfully built home.

The programming phase in the construction of a system produces a large volume of
deliverables. During this phase, the number of items to be tested increases signifi-
cantly. Therefore, it becomes important to understand the deliverables, their risk, and
which segments of the deliverables need to be tested.

The IT project leader should be responsible for testing during the programming
phase. The primary objective for this testing is to ensure that the design specifications
have been correctly implemented. Program testing is not concerned with achieving the
user’s needs, but rather that the developed structure satisfies the design specifications
and works. Much of the testing will be conducted by the programmer. Testing at this
point is highly technical, and it normally requires someone with programming experi-
ence. These tests should be complete prior to interconnecting the entire application and
testing the application system.

This verification task describes a test process to use during programming. Desk
debugging and peer reviews are recommended as effective test methods during the pro-
gramming phase. This relatively low-cost test approach has proven to be effective in
detecting problems and can be used at any point during the programming activity. The
task includes a complete test program addressing all of the programming phase con-
cerns, as follows:

1. Program testing will consist exclusively of dynamic testing as opposed to
including static testing. Static testing using techniques such as desk debugging
and peer reviews is much more effective in uncovering defects than is dynamic
testing. The concern is that the proper testing technique will not be used for the
needed test objective.

2. Program testing will be too costly. Programmers have a tendency to identify
defects, assume there are no more, and then correct those defects and retest.
This has proven to be a time-consuming and costly approach to testing. Using
static methods to remove defects and dynamic testing to verify functionality
is a much more efficient method of program testing.

3. Programs will be released for string, system, and acceptance testing before
they are fully debugged. The shortest and most economical testing is to
remove all the defects at one level of testing before moving to the next level.
For example, it is much more economical to continue program testing to
remove program defects than to identify those defects in string testing.

Step 3: Verification Testing 325

Desk Debugging the Program

Desk debugging enables the programmer to evaluate the completeness and correctness
of the program prior to conducting more expensive testing. In addition, desk debug-
ging can occur at any point in the programming process, including both program
design and coding. Desk debugging can be as extensive or as minimal as desired. The
amount of desk debugging performed will depend on the following:

Wait time until the next program deliverable is received
Implementation schedule

Testing resources

Efficiency of test tools

Departmental policy

Desk debugging can be syntactical, structural, or functional.

Syntactical Desk Debugging

Program specifications and program statements must be developed in accordance with
departmental methodology and compiler requirements. The programmer can check
the appropriate syntax of the documentation and statements to ensure they are written
in compliance with the rules. Syntactical checking asks questions such as these:

m s the job identification correct?
= Are program statements appropriately identified?
Are program statements constructed using the appropriate structure?

Are data elements properly identified?

Do the program statements use the proper data structure; for example, do
mathematical instructions work on mathematical fields?

Are the data structures adequate to accommodate the data values that will be
used in those structures?

Structural Desk Debugging

Structural problems account for a significant number of defects in most application
systems. These defects also mask functional defects so that their detection becomes
more difficult. The types of questions to be asked during structural desk debugging
include these:

m Are all instructions entered?
Are all data definitions used in the instructions defined?
Are all defined data elements used?

Do all branches go to the correct routine entrance point?

Are all internal tables and other limits structured so that when the limit is
exceeded processing can continue?

326

Chapter 9

Functional Desk Debugging

The functions are the requirements that the program is to perform. The questions to be
asked about the function when desk debugging include the following;:

m Will the program perform the specified function in the manner indicated?
m Are any of the functions mutually exclusive?

m Will the system detect inaccurate or unreasonable data?

-

Will functional data be accumulated properly from run to run?

Performing Programming Phase Test Factor Analysis

The depth of testing in the programming phase depends on the adequacy of the system
at the end of the design phase. The more confidence the test team has in the adequacy
of the application at the end of the design phase, the less concern they will have dur-
ing the programming phase. During requirements and design testing, the concerns
over the test factors may change based on test results. In the programming phase, the
test team should identify the concerns of most interest, and then develop the test
process to address those concerns. In identifying these concerns, the test team must
take into account changes that have occurred in the system specifications since the last
test was conducted. The objectives that the test team members should continually con-
sider when testing during the programming phase include the following:

m Are the systems maintainable?
m Have the system specifications been implemented properly?

m Do the programs comply with information services standards and procedures
as well as good practice?

m [s there a sufficient test plan to evaluate the executable programs?

m Are the programs adequately documented?
The test concerns to be considered during this subtask are as follows:

m Data integrity controls implemented. Specific controls need to be implemented
in a manner that will achieve the desired processing precision. Improperly
implemented controls may not achieve the established level of control toler-
ance, and because of the widespread misunderstanding of the purpose of con-
trols (i.e., reduced risk), simplistic solutions might be implemented where
complex controls are needed to achieve the control objectives.

m Authorization rules implemented. Authorization rules need to be imple-
mented in a manner that makes it difficult to circumvent them. For example,
when authorization limits are set, people should not be able to circumvent
these limits by entering numerous items under the prescribed limit. Therefore,
authorization rules must not only consider the enforcement of the rules, but
also take into account the more common methods to circumvent those rules.

m File integrity controls implemented. File integrity controls should be imple-
mented in a manner that minimizes the probability of loss of file integrity, and

Step 3: Verification Testing

327

they should both prevent the loss of integrity and detect that loss, should it
occur, on a timely basis.

Audit trail implemented. The audit trail needs to be implemented in a manner
that facilitates retrieval of audit trail information. If the audit trail contains
needed information, but it is too costly or time-consuming to use, its value
diminishes significantly. The implementation considerations include the amount
of information retained, sequencing for ease of retrieval of that information,
cross-referencing of information for retrieval purposes, as well as the length of
time that the audit trail information needs to be retained.

Contingency plan written. The contingency plan is a set of detailed procedures
in step-by-step format outlining those tasks to be executed in the event of prob-
lems. The plan should describe the preparatory tasks so that the necessary data
and other resources are available when the contingency plan needs to be acti-
vated. The design contingency approach is of little value until it is documented
and in the hands of the people who need to use it.

System to achieve service level designed. The desired service level can only
become a reality when the procedures and methods are established. One proce-
dure that should be set up is the monitoring of the level of service to ensure
that it meets specifications. The inclusion of monitoring routines provides assur-
ance over an extended period of time that service levels will be achieved, or if
not, that fact will be detected early so corrective action can be taken.

Security procedures implemented. Security is the combination of employee
awareness and training, plus the necessary security tools and techniques. The
procedures ensuring that these two parts are available and working together
must be developed during the programming phase.

Program complies with methodology. Procedures should be implemented that
ensure compliance with developmental standards, policies, procedures, and
methods. If noncompliance is detected, appropriate measures must be taken to
either obtain a variance from the methodology or modify the system or design
so that compliance is achieved. Although methodology does not necessarily
satisfy user objectives, it is necessary to satisfy information services design
objectives.

Program conforms to design.

m Correctness. Changing conditions cause many information services project
personnel to ignore project objectives during the program phase. The argu-
ment is that there are sufficient changes so that monitoring compliance to sys-
tem objectives is meaningless. The test team should discourage this thinking
and continually monitor the implementation of objectives. If objectives have
not been met, either they should be changed or the system changed to bring
it into compliance with the functional specifications of the application.

m Ease of use. The implementation of system specs may negate some of the
ease-of-use design aspects unless those aspects are specifically defined.
Programming is a translation of design specifications and it may fail to
achieve the ease-of-use intent. Programming must achieve this ease-of-use
design spec as it does other functional specifications.

328 Chapter 9

m Portability. The portability of programs depends on the language selected
and how that language is used. The specifications should indicate the do’s
and don’ts of programming for portability, and the coding should conform
to those design specifications. If portability is a major concern and the pro-
gram specifications fail to define portability coding adequately, the pro-
grammer should make every effort to write in as straightforward a method
as possible.

m Coupling. The design specifications should indicate parameters passing to
and from other application systems. It is normally good practice for the pro-
grammer to verify that the system’s specifications are up-to-date prior to
coding intersystem functions. This ensures not only that the programs con-
form to the design, but that the specifications of interconnected applications
have not changed since the design was documented.

m Performance. The creation of the program provides the first operational
opportunity for users to assess whether the system can achieve the desired
performance level. At this point, the instructions to perform the require-
ments have been defined and can be evaluated. An early assessment of
potential performance provides an opportunity to make performance
adjustments if necessary.

m Program is maintainable. The method of program design and coding may
have a greater significance for maintainability than the design specifications
themselves. The rules of maintainable code should be partially defined by
departmental standards, and partially defined by system specifications. In
addition, the programmer should use judgment and experience in developing
highly maintainable code.

m Operating procedures developed. Procedures should be developed during
programming to operate the application system. During the next phase, the
executable programs will be operated, and the necessary instructions should be
developed prior to that phase of the SDLC. The operating procedures should
be consistent with the application system operational requirements.

A detailed test process is illustrated in Work Paper 9-8 for each of the 15 identified
programming phase test concerns. The test process includes test criteria, recom-
mended test processes, techniques, and tools. The team conducting the test is urged to
use judgment in determining the extent of tests and the applicability of the recom-
mended techniques and tools to the application being tested. Work Paper 9-9 is a qual-
ity control checklist for this task.

Conducting a Peer Review

The peer review provides a vehicle for knowledgeable people (peers) to contribute to the
construction of the computer program by informally but effectively reviewing the func-
tioning of the program in a non-threatening environment. The peer review provides a
static analysis that evaluates both the structure and the functioning of the program. The
peer review can detect syntactical errors, but more through personal observation than as
a direct result of the walkthrough.

Step 3: Verification Testing

329

Peer reviews can also be formal. Whether the formal or informal version is used,
management should approve the peer review concept. Formal peer reviews are an
integral task in the programming process, whereas informal peer reviews are called for
at the discretion of the lead programmer.

The peer review team should consist of between three and six members. It is impor-
tant to have at least three members on the peer review team to obtain sufficiently var-
ied opinion and to keep discussion going. Individuals who should be considered for
the peer review team include the following;:

Computer programmers (at least two)
Job control specialists

Computer operator

Control clerk

Programming supervisor

Program peer reviews are performed by executing the following tasks.

Establishing Peer Review Ground Rules

This need not be done for every peer review, but it is important to have good ground
rules. Among the ground rules that need to be decided are the following:

m Areas included and excluded from the peer review; for example, whether effi-
ciency of programs will be included

Whether reports will be issued
Method for selecting peer review team leader

Location of conducting the peer review

Method for selecting a peer review

Selecting the Peer Review Team

The members of the peer review team should be selected sufficiently in advance so that
they can arrange their schedules to allocate sufficient time and acquire training for the
peer review exercise.

Training Team Members

If an individual on the team has not participated in the program peer review previ-
ously, that individual should be trained in the process. Training includes an under-
standing of the peer review ground rules, preferably some training in interpersonal
relationships such as how to interview and work with people in a peer review process,
and training in the intent of the standards and program methodologies.

Selecting a Review Method

The team leader should select the review method. The review itself consists of two
parts. The first part is a general explanation of the objectives and functioning of the

330 Chapter 9

program. The second part is the review of the program(s) using the selected method.
Four methods can be used to conduct the peer review:

1. Flowchart. The program is explained from a flowchart of the program logic. This
is most effective when the flowchart is produced directly from the source code.

2. Source code. The review examines each line of source code in order to under-
stand the program.

3. Sample transactions. The lead programmer explains the programs by explain-
ing the processing that occurs on a representative sample of transactions.

4. Program specifications. The program specifications are reviewed as a means of
understanding the program.

Conducting the Peer Review

The project lead programmer normally oversees the peer review. The peer review com-
mences by having the lead programmer briefly review the ground rules, explain the
program’s objectives, and then lead the team through the program processing. The
review team is free to question and comment on any aspect of the project program-
mer’s explanations and to make recommendations and suggestions about the pro-
gram. Generally, the peer review is conducted in a democratic manner. The role of the
team leader is to ensure that the team’s questions and comments are in order, ensure
the team members’ rights to ask questions, to make recommendations, or to stop inter-
rogation on a specific point if, in the opinion of the inspection team leader, there is no
benefit from continuing discussion.

Drawing Conclusions

At the end of the formal peer review, the lead programmer indicates that he or she has
no more comments to make and turns the meeting over to the peer review team leader.
The peer review team leader now takes control of the meeting and summarizes the fac-
tual information drawn from the review and presents the review team’s recommenda-
tions. Ideally, this is done as a group activity, but some peer review teams, especially
when the process is formalized, may want some time alone to discuss among them-
selves what they have heard and what they are going to recommend. The findings and
recommendations are then presented to the project team for their consideration.

Preparing Reports

In the formal peer review process, reports may be prepared documenting the results.
However, this is optional and not an essential part of the peer review process.

Check Procedures

Three quality control checklists are provided for this chapter. Testers should complete
Work Paper 9-2 at the end of the requirements phase, Work Paper 9-7 at the end of the
design phase, and Work Paper 9-9 at the end of the programming phase. The checklists
are designed so that “Yes” responses indicate that the verification technique was per-
formed correctly and “No” responses warrant further investigation.

Step 3: Verification Testing

331

Output

The only output from Task 1 is a report indicating requirements deficiencies. These will
indicate where requirements are not accurate and/or complete. It is important that this
report be prepared prior to completing the requirements checkpoint.

In Task 2, both the design review and the design deliverables inspection process will
produce a defects list. Because the review is more general in nature, it may include some
recommendations and areas of concern. Because inspections are more specific and tied to
standards, these defects are usually variances from standards and are not debatable.

One of three categories of results can be produced from each design deliverables
inspection:

No defects found
Minor work required

Major rework required

After all the steps in Task 2 have been performed, there should be only one deliver-
able: the moderator’s certification of the product, releasing the product to the next
phase of the process to make the organization software compliant.

Two outputs should occur from Task 3. The first is a fully debugged program, after
you have used static testing to uncover and remove defects. The second is a list of the
defects uncovered during testing. Note that if the organization has a quality assurance
activity, that list of defects should be forwarded to them, so that they may address weak-
nesses in processes to eliminate reoccurrence of the same defects in other programs. In
the formal peer review process in Task 3, reports may be prepared documenting the
results. However, this is optional and not an essential part of the peer review process.

Guidelines

The walkthrough test tool and risk matrix are two of the more effective test tools for the
requirements phase. The use of these tools will help determine whether the require-
ments phase test factors have been adequately addressed. These recommendations are
not meant to exclude from use the other test tools applicable to the requirements phase,
but rather to suggest and explain in detail two of the more effective tools for this phase.

Many of the available test tools for systems design are relatively new and unproven.
Some of the more promising techniques require design specifications to be recorded in
predetermined formats. Although the long-run potential for design phase testing is
very promising, few proven design phase test tools currently exist.

Two design phase test tools that are receiving widespread acceptance are scoring
and design reviews. Scoring is a tool designed to identify the risk associated with an
automated application. The design review concept involves a formal assessment of the
completeness of the process followed during the design phase. These two recom-
mended test tools complement each other. Scoring is a process of identifying the sys-
tem attributes that correlate to risk and then determining the extent to which those
attributes are present or absent in the system being scored. The result of scoring is a

332

Chapter 9

determination of the degree of risk in the application system, and thus establishes the
extent to which testing is needed. The design review then becomes the vehicle for testing
the design specifications. The higher the risk, the more detailed the design review should
be; for minimal-risk systems, the design review could be limited or even nonexistent.

Two test tools have proven themselves over the years in programming phase test-
ing: desk debugging and peer review. These two tools are closely related and comple-
ment each other. Desk debugging is performed by the individual programmer prior to
peer reviews, which are normally performed by other members of the information ser-
vices department. A combination of the two tools is effective in detecting both struc-
tural and functional defects.

Summary

This chapter covers three tasks for performing verification during three phases of sys-
tem development. Task 1 provides a process for assessing the accuracy and complete-
ness of requirements. The cost of uncovering and correcting requirement deficiencies
at this phase of development is significantly less than during acceptance testing. Esti-
mates indicate that it would cost at least ten times as much to correct a requirement
deficiency in acceptance testing than during this phase. If testers can increase the accu-
racy and completeness of requirements at this point of development, the test effort
during the design phase can emphasize structural concerns and implementation con-
cerns as opposed to identifying improper requirements at later test phases.

Task 2 describes a process for testers to evaluate the accuracy and completeness of
the design process. Once verified as accurate and complete, the design can be moved
to the build phase to create the code that will produce the needed results from the user-
provided input.

Task 3 describes static testing during the build /programming phase. The method of
generating computer code varies significantly from organization to organization, and
from project to project.

The programming phase testing approach outlined in this task is designed to cover
all methods of code generation. However, all of the techniques should be used when
code is generated through statement languages. When code generators are used from
design specifications, the program testing will be minimal. Some of these program-
ming testing techniques may be incorporated in design phase testing. After the static
verification testing is done, the testing emphasis shifts to dynamic testing.

WORK PAPER 9-1 Requirements Test Phase Process

TEST FACTOR: Requirements Comply with Methodology

policies, and procedures in
effect at the time the system
goes operational?

dates of new standards, policies, and procedures.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
. Have the applicable Confirm with those individuals responsible for Compliance | Confirmation/
organization’s policies and developing the policies and procedures that all the examination
procedures been identified? applicable policies have been identified.
. Do the requirements comply with Review requirement to ensure compliance. Compliance | Fact finding
these policies and procedures?
. Have the requirements been Examine requirements to ensure all needed Compliance | Checklist
documented in accordance with documentation is complete.
the requirements methodology?
. Is the cost/benefit analysis Examine cost/benefit analysis to ensure it was Compliance | Checklist
prepared in accordance with the prepared in accordance with procedures.
appropriate procedures?
. Has the requirements phase met Review the deliverables from requirements and Compliance | Checklist
the intent of the requirements assess if they meet the intent of the methodology.
methodology?
. Is the requirements phase Verify that the project is appropriately staffed. Compliance | Peer review
staffed according to procedures?
. Will all of the applicable policies, Confirm with the appropriate parties the effective Compliance | Fact finding
procedures, and requirements dates of existing policies, procedures, and
be in effect at the time the regulations.
system goes in operation?
. Will there be new standards, Confirm with the appropriate parties the effective Compliance | Fact finding

(continues)

WORK PAPER 9-1 (continued)

TEST FACTOR: Functional Specifications Defined

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
. Can the data required by the Confirm with the people who would generate the Requirements| Fact finding
application be collected with the data that it can be generated with the desired
desired degree of reliability? degree of reliability.
. Can the data be collected within Confirm with the people generating the data that it | Requirements| Fact finding
the time period specified? can be collected within the required time frame.
. Have the user requirements Confirm with the user that the requirements in Requirements| Checklist

been defined in writing?

. Are the requirements stated in
measurable terms?

. Has the project solution
addressed the user
requirements?

. Could test data be developed to
test the achievement of the
objectives?

. Have procedures been specified
to evaluate the implemented
system to ensure the
requirements are achieved?

. Do the measurable objectives
apply to both the manual and
automated segments of the
application system?

writing are complete.

Examine the reasonableness of the criteria for
measuring successful completion of the
requirements.

Examine the system specifications to confirm they
satisfy the user’s stated objectives.

Verify that the requirements are stated in enough
detail that they could generate test data to verify
compliance.

Examine the specifications that indicate a
post-installation review will occur.

Examine to verify that the system objectives cover
both the manual and automated segments of the
application.

Requirements

Requirements

Requirements

Requirements

Requirements

Walkthroughs

Walkthroughs

Test data

Confirmation/
examination

Confirmation/
examination

WORK PAPER 9-1 (continued)

TEST FACTOR: Usability Specifications Defined

to the user personnel for
comment?

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

. Have the user functions been Confirm with the user that all user functions are Manual Confirmation/
identified? defined in requirements. support examination

. Have the skill levels of the users Examine requirements documentation describing Manual Confirmation/
been identified? user skill level. support examination

. Have the expected levels of Examine requirements documentation describing Manual Confirmation/
supervision been identified? expected level of supervision. support examination

. Has the time span for user Confirm with the user that the stated time span for Manual Confirmation/
functions been defined? processing is reasonable. support examination

. Will the counsel of an industrial Confirm that the industrial psychologist’s services Manual Confirmation/
psychologist be used in will be used. support examination
designing user functions?

. Have clerical personnel been Confirm with clerical personnel that their input has Manual Confirmation/
interviewed during the been obtained. support examination
requirements phase to identify
their concerns?

. Have tradeoffs between Examine reasonableness of identified tradeoffs. Manual Design reviews
computer and people processing support
been identified?

. Have the defined user Confirm that users have examined their Manual Confirmation/
responsibilities been presented responsibilities. support examination

(continues)

WORK PAPER 9-1 (continued)

TEST FACTOR: Maintenance Specifications Defined

to properly document the
application for maintenance
purposes?

documentation.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

. Has the expected life of the Confirm with the user that the stated project life is Compliance | Confirmation/
project been defined? reasonable. examination

. Has the expected frequency of Confirm with the user that the expected frequency Compliance | Confirmation/
change been defined? of change is reasonable. examination

. Has the importance of keeping Confirm with the user that the stated importance of | Compliance | Confirmation/
the system up to date functional updates is correct. examination
functionally been defined?

. Has the importance of keeping Confirm with IT management that the importance Compliance | Confirmation/
the system up to date of technological updates is correct. examination
technologically been defined?

. Has it been decided who will Confirm with IT management who will perform Compliance | Confirmation/
perform maintenance on the maintenance. examination
project?

. Are the areas of greatest Examine documentation for areas of expected Compliance | Peer review
expected change identified? change.

. Has the method of introducing Examine project change procedures. Compliance | Checklist
change during development
been identified?

. Have provisions been included Examine the completeness of project maintenance Compliance | Peer review

WORK PAPER 9-1 (continued)

TEST FACTOR: Portability Needs Determined

been documented?

portability requirements.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

. Are significant hardware Confirm with computer operations expected Operations Confirmation/
changes expected during the life hardware changes. examination
of the project?

. Are significant software changes Confirm with computer operations expected Operations Confirmation/
expected during the life of the software changes. examination
project?

. Will the application system be Confirm with the user the locations where the Compliance | Confirmation/
run in multiple locations? application will be operated. examination

. If an online application, will Examine terminal hardware requirements. Compliance | Confirmation/
different types of terminals be examination
used?

. Is the proposed solution Review requirements to identify hardware Compliance | Inspections
dependent on specific restrictions.
hardware?

. Is the proposed solution Review requirements to identify software Compliance | Inspections
dependent on specific software? restrictions.

. Will the application be run in Confirm with the user the countries in which the Compliance | Confirmation/
other countries? application will be run. examination

. Have the portability requirements Examine the requirements documentation for Compliance | Inspections

(continues)

WORK PAPER 9-1 (continued)

TEST FACTOR: Systems Interface Defined

systems been taken into
consideration?

consider future requirements.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
. Have data to be received from Confirm with the project team that interfaced Intersystems | Confirmation/
other applications been applications have been identified. examination
identified?
. Have data going to other Confirm with the project team that interfaced Intersystems | Confirmation/
applications been identified? applications have been identified. examination
. Has the reliability of interfaced Confirm with other applications the reasonableness | Control Fact finding
data been defined? of reliability requirements.
. Has the timing of transmitting Confirm with other applications the reasonableness | Control Fact finding
data been defined? of timing requirements.
. Has the timing of data being Confirm with other applications the reasonableness | Control Fact finding
received been defined? of timing requirements.
. Has the method of interfacing Examine documentation to ensure the completeness | Intersystems | Walkthroughs
been defined? of interface methods.
. Have the interface requirements Verify completeness of the interface requirements Intersystems | Walkthroughs
been documented? documentation.
. Have future needs of interfaced Confirm with interfaced projects the need to Intersystems | Fact finding

WORK PAPER 9-1 (continued)

TEST FACTOR: Performance Criteria Established

exist that identifies tasks,
people, budgets, and costs?

work program.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

. Will hardware and software be Examine the reasonableness of the competitive Compliance | Acceptance test
obtained through competitive bidding procedures. criteria
bidding?

. Have cost-effectiveness criteria Examine the cost-effectiveness criteria. Compliance | Confirmation/
been defined? examination

. Has the cost-effectiveness for Examine the calculation and confirm that it has Compliance | Checklist
this application system been been prepared in accordance with the procedures.
calculated in accordance with
the procedures?

. Are the cost-effectiveness Confirm with the user that the procedures are Compliance | Confirmation/
procedures applicable to this applicable to this application. examination
application?

. Could application characteristics Confirm with the user that there are no unusual Compliance | Confirmation/
cause the actual cost to vary characteristics that could cause the cost to vary examination
significantly from the significantly.
projections?

. Are there application Confirm with the user that there are no Compliance | Confirmation/
characteristics that could cause characteristics that would cause the actual benefits examination
the benefits to vary significantly to vary significantly from the projected benefits.
from the projected benefits?

. Is the expected life of the project Confirm with the user the reasonable life for the Compliance | Confirmation/
reasonable? project. examination

. Does a design phase schedule Examine the completeness of the design phase Compliance | Design review

(continues)

WORK PAPER 9-1 (continued)

TEST FACTOR: Operational Needs Defined

computer operations that they
havebeen advised of project
requirements?

been advised of project requirements.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

Have the volume of transactions Confirm with user that the volume of transactions Compliance Confirmation/
been identified? is correct. examination
Has the timing of processing Confirm with user that the timing is reasonable. Compliance | Confirmation/
been determined? examination
Has the frequency of processing Confirm with user that the frequency is reasonable. | Compliance | Confirmation/
been determined? examination
Has the number of documents Confirm with user that the storage requirements Compliance | Confirmation/
that need to be stored online are correct. examination
been determined?

. Will communication capabilities Confirm with user that the communication needs Compliance | Confirmation/
be required for processing? are correct. examination

. Will special processing Review documentation to identify special Operations Peer review
capabilities such as optical processing needs.
scanners be required?

. Will computer operations be Review documentation to identify special operating | Operations Peer review
expected to perform special requirements.
tasks, such as data entry?
Has it been confirmed with Confirm with computer operations that they have Operations Confirmation/

examination

WORK PAPER 9-1 (continued)

TEST FACTOR: Tolerances Established

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
. Have the significant financial Confirm with the accounting department that the Control Confirmation/
fields been identified? indicated financial fields are the key financial fields examination
for the application system.
. Has responsibility for the Examine system documentation indicating Control Inspections
accuracy and completeness of individual responsible for each key financial field.
each financial field been assigned?
. Have the accuracy and Assess the completeness of the identified risks. Requirements| Walkthroughs

completeness risks been
identified?

. Has the individual responsible
for each field stated the required
precision for financial accuracy?

. Has the accounting cutoff
method been determined?

. Have procedures been established
to ensure that all of the transactions
will be entered on a timely basis?

. Has a procedure been specified
to monitor the accuracy of
financial information?

. Are rules established on

handling inaccurate and
incomplete data?

Review the system documentation to determine
that the stated accuracy precision is recorded.

Confirm with the user that the projected cutoff
procedure is realistic.

Examine the reasonableness of the procedures to
ensure the timely recording of transactions.

Review the reasonableness of the procedures to
monitor financial accuracy.

Review the reasonableness of the procedures to
handle inaccurate and incomplete data.

Control

Control

Control

Control

Error
handling

Confirmation/
examination

Confirmation/
examination

Walkthroughs

Walkthroughs

Inspections

(continues)

WORK PAPER 9-1 (continued)

TEST FACTOR: Authorization Rules Defined

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
Have all of the key transactions Confirm with the user that all of the key Security Confirmation/
been identified? transactions are identified. examination
Have the rules for authorizing Verify that the authorization rules comply with Control Confirmation/

each of the key transactions
been determined?

. Are the authorization rules

consistent with the value of the
resources controlled by the
transaction?

Have the individuals who can
authorize each transaction been
identified?

Have specifications been determined
requiring the name of the individual
authorizing the transaction to be
carried with the transaction?

Have the transactions that will be
automatically generated by the
system been identified?

Have the rules for authorizing
computer-generated transactions
been identified?

Have procedures to monitor the
reasonableness of computer-
generated transactions been
specified?

organizational policies and procedures.

Review the reasonableness of the authorization
rules in relationship to the resources controlled.

Verify that the individuals have been granted that
specific authorization by management.

Review the documentation to verify the
specifications require the system to maintain
records on who authorized each transaction.

Confirm with the user that all of the transactions
that will be computer generated have been
identified.

Verify that these authorization rules are consistent
with the organization’s policies and procedures.

Review the reasonableness of the procedures that
will monitor computer-generated transactions.

Requirements

Control

Requirements

Security

Control

Requirements

examination &
Peer review

Walkthroughs
and Peer
review

Confirmation/
examination &
Peer review

Inspection

Confirmation/
examination

Confirmation/
examination

Walkthroughs

WORK PAPER 9-1 (continued)

TEST FACTOR: File Integrity Requirements

TEST CRITERIA

ASSESSMENT
Very Ade- | Ade- Inade-
quate quate quate | N/A

RECOMMENDED TEST

TEST
TECHNIQUE

TEST
TOOL

1. Have key computer files been
identified?

2. Has the composition of the data
on each of the key files been
identified?

3. Have the key control fields been
identified?

4. Has the method of internal file
integrity for each of the key
fields been determined?

5. In a multiuser system, has one
user been assigned data integrity
responsibility?

6. Has a decision been made as
to whether the integrity of
the field warrants an external,
independently maintained
control total?

7. Has the method of maintaining
independent control totals on the
key fields been determined?

8. Have tolerances been established
on the degree of reliability expected
from file integrity controls?

Confirm with the user that the identified files are
the key files.

Confirm with the user that the major data fields
have been identified.

Confirm with the user that the identified key fields
are the key control fields.

Verify the reasonableness of the method to ensure
the integrity of the key fields within the automated
system.

Determine the reasonableness of assigning
responsibility to the named individual.

Confirm with the organization’s comptroller the
importance of the key fields with which
independent external control totals are not
maintained.

Examine the reasonableness of the method for
maintaining independent control totals on key
fields.

Confirm the reasonableness of the integrity
tolerances with the organization’s comptroller.

Requirements

Requirements

Requirements

Control

Control

Control

Control

Control

Confirmation/
examination

Confirmation/
examination
Confirmation/
examination
Walkthroughs

Fact finding

Confirmation/
examination

Fact finding

Confirmation/
examination

(continues)

WORK PAPER 9-1 (continued)

TEST FACTOR: Reconstruction Requirements Defined

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
Does the organization’s record Review the applicability of the record retention Control Walkthroughs

retention policy include
automated applications?

Have the criteria for
reconstructing transaction
processing been determined?

Have the criteria for
reconstructing computer files
been determined?

Is requirements documentation
adequate and in compliance
with standards?

Have the criteria for reconstructing
processing from a point of known
integrity been determined?

Has the project stated a
requirement to trace transactions
to application control totals?

Has the project stated a
requirement specifying that
control totals must be supportable
by identifying all the transactions
comprising that control total?

Has the retention period for all of

the reconstruction information
been specified?

policy to automated applications.

Review the reasonableness of the reconstruction
criteria with the application user.

Verify the reasonableness of reconstruction
procedures with the manager of computer
operations.

Verify the completeness and adequacy of
requirements documentation.

Confirm the reasonableness of the processing
reconstruction requirements with the manager of
computer operations.

Verify that the system specifications include this
requirement.

Verify that the system specifications include this
requirement.

Confirm that the retention periods are in
accordance with the organization’s record retention

policy.

Requirements

Requirements

Requirements

Requirements

Control

Control

Requirements

Fact finding

Fact finding

Inspections

Confirmation/
examination

Confirmation/
examination

Confirmation/
examination

Inspections

WORK PAPER 9-1 (continued)

TEST FACTOR: Impact of Failure Defined

for notifying users in the event of
a system failure?

Has the desired percent of up-
time for the system been specified?

notification procedure.

Confirm with the user the reasonableness of the
up-time.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST

TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
Has the dollar loss of an application Examine the reasonableness of the dollar loss. Recovery Fact finding
system failure been defined?
Has the dollar loss calculation Examine the reasonableness of the loss amounts at Recovery Fact finding
for a failure been extended to various time intervals.
show the loss at different time
intervals, such as one hour, eight
hours, one day, one week, etc.?
Is the proposed system Confirm with independent sources the reliability Recovery Confirmation/
technology reliable and proven and track record of the recommended hardware examination
in practice? and software.
Has a decision been made as to Confirm the correctness of the decision with the Recovery Confirmation/
whether it is necessary to system user. examination
recover this application in the
event of a system failure?

. Are alternate processing procedures Confirm with the user the need for alternate Recovery Confirmation/
needed in the event that the processing procedures. examination
system becomes unoperational?

If alternate processing Confirm with the user the reasonableness of those Recovery Confirmation/
procedures are needed, have alternate processing procedures. examination
they been specified?

Has a procedure been identified Confirm with the user the reasonableness of the Recovery Confirmation/

examination

(continues)

WORK PAPER 9-1 (continued)

TEST FACTOR: Desired Service Level Defined

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has the response time for each Confirm with the user that the response times Operations Confirmation/
transaction been identified? are reasonable. examination

2. Has a schedule been established Confirm with computer operations that there is Operations Confirmation/
indicating which part of the system sufficient capacity to meet these service levels. examination
is run on which day?

3. Do all vendor contracts indicate Review contractual specifications to ensure they Operations Confirmation/
maintenance support for key include maintenance. examination
hardware and software?

4. Have processing tolerances been Confirm with the user that these service level Operations Confirmation/
established for each part of the tolerances are correct. examination
system?

5. Can computer operations process Confirm with the manager of computer Operations Confirmation/
the requirements within the operations the reasonableness of the examination
expected tolerances? tolerances.

6. Has the priority of each part of system Confirm with the user the reasonableness of the Operations Confirmation/
processing been decided to deter- priorities. examination
mine which segment runs first in the
event computer time is limited?

7. Has the priority of each application Confirm with a member of executive Operations Confirmation/
been established in relationship to management the reasonableness of the examination
other applications to determine application system priority.
priority of processing after a failure
and in the event of limited computer
time?

8. Has the volume of processing require- Confirm with the manager of operations there Operations Confirmation/

ments been projected for a reason-
able period of time in the future?

will be sufficient capacity to meet these
increased volumes.

examination

WORK PAPER 9-1 (continued)

TEST FACTOR: Access Defined

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

Have the application resources Confirm with the user that the identified resources Security Risk matrix &

been identified? are complete. Confirmation/
examination

Have the users of those Confirm with the individual responsible for those Security Risk matrix &

resources been identified? resources that the users are authorized. Confirmation/
examination

Have the individuals responsible Confirm with user management that these are the Security Risk matrix &

for those resources been individuals responsible for those resources. Confirmation/

identified? examination

Has a profile been established Examine the completeness of the user profile. Security Risk matrix &

matching resources with the Peer review

users authorized to access those

resources?

Have procedures been identified Confirm with the manager of computer operations Security Confirmation/

to enforce the user profile? that the procedures are workable. examination

Has the importance of each Confirm with the individual responsible that the Security Confirmation/

resource been identified? security classifications are correct. examination

Has a procedure been Evaluate the reasonableness of the monitoring Control Fact finding

established for monitoring procedures.

access violations?

Has a process been established Confirm with management that they intend to Control Confirmation/

to punish access violators?

enforce violation procedures.

examination

348 Chapter 9

WORK PAPER 9-2 Quality Control Checklist

YES | NO| N/A COMMENTS

1. Are the defined requirements testable?

2. Does the user agree the defined
requirements are correct?

3. Do the developers understand the
requirements?

4. Do the stated requirements meet the
stated business objectives for the
project?

5. Have the project risks been identified?

6. Was a reasonable process followed in
defining the requirements?

7. Are project control requirements
adequate to minimize project risks?

8. Was a project requirements
walkthrough conducted?

WORK PAPER 9-3 Computer Applications Risk Scoring Form'

SIGNIFICANT INDICATIVE OF INDICATIVE OF INDICATIVE OF
CHARACTERISTICS HIGH RISK MEDIUM RISK LOW RISK COMMENTS

System Scope and Complexity

Organizational breadth

a) Important functions Must meet important Meets limited conflicting No significant conflicting

conflicting needs of requirements of needs, serves primarily
several organizational cooperative organizational one organizational unit.
units. units.

b) Unrelated Dependent upon data Dependent upon data Virtually all input data
organizational units flowing from many from a few organizational comes from a small group
deeply involved organizational units not units with a common interest; of sections under unified

under unified direction. if not unified control. control.

Information services breadth

a) Number of transaction More than 25 6 to 25 Fewer than 6
types

b) Number of related More than 6 4t06 Fewer than 4
record segments

c) Output reports More than 20 10 to 20 Fewer than 10

Margin of error

a) Necessity for Very demanding Realistically demanding Comfortable margin
everything to work
perfectly, for “split-
second timing” for
great cooperation
(perhaps including
external parties), etc.

Technical complexity

a) Number of programs More than 35 20 to 35 Fewer than 20
including sort/merge

"Risk scoring method developed by the General Accounting Office. (continues)

WORK PAPER 9-3 (continued)

SIGNIFICANT
CHARACTERISTICS

INDICATIVE OF
HIGH RISK

INDICATIVE OF
MEDIUM RISK

INDICATIVE OF

LOW RISK COMMENTS

b) Programming
approach (number of
module/functions
interacting within an
update/file
maintenance program)

c) Size of largest
program

d) Adaptability of
program to change

e) Relationship to
equipment in use

f) Reliance on online
data entry, automatic
document reading, or
other advanced
techniques

Pioneering aspects

Extent to which the
system applies new,
difficult, and unproven
techniques on a broad
scale or in a new

situation, thus placing
great demands on the
non-IS departments,
systems and programming
groups, IS operations personnel,
customers, or vendors, etc.

More than 20

More than 60K

Low, due to monolithic
program design.

Pushes equipment
capacity near limits.

Heavy, including direct
entry of transactions and
other changes into the
master files.

More than a few relatively
untried equipment or
system software
components or system
techniques or objectives,
at least one of which is
crucial.

10 to 20

25K to 60K

Can support problems
with adequate talent and
effort.

Within capacities.

Remote-batch processing
under remote operations
control.

Few untried systems
components and their
functions are moderately
important; few, if any,
pioneering system
objectives and techniques.

Fewer than 10

Fewer than 25K

Relatively high; program
straightforward, modular,
roomy, relatively
unpatched, well-
documented, etc.

Substantial unused
capacity.

None or limited to file
inquiry.

No untried system
components; no
pioneering system
objectives or techniques.

WORK PAPER 9-3

(continued)

SIGNIFICANT INDICATIVE OF INDICATIVE OF INDICATIVE OF
CHARACTERISTICS HIGH RISK MEDIUM RISK LOW RISK COMMENTS
System stability
a) Age of system (since Less than 1 year 1 to 2 years Over 2 years

inception or last big
change)

b) Frequency of
significant change

c) Extent of total change
in last year

d) User approval of
specifications

Satisfaction of user
requirements

a) Completeness

b) Accuracy

c) Promptness in terms
of needs

More than 4 per year

Affecting more than 25%
of programs.

Cursory, essentially
uninformed.

Incomplete, significant
number of items not
processed in proper
period.

Considerable error
problem, with items in
suspense or improperly
handled.

Reports and documents
delayed so as to be

almost useless; forced to
rely on informal records.

2 to 4 per year

Affecting 10 to 25% of
programs.

Reasonably informed as to
general but not detailed
specifications; approval
apt to be informal.

Occasional problems but
normally no great
difficulties.

Occasional problems but
normally not great
difficulties.

Reports and documents
not always available when
desired; present timetable

inconvenient but tolerable.

Fewer than 2 per year

Affecting less than 10% of
programs.

Formal, written approval,
based on informed
judgment and written,
reasonably precise
specifications.

No significant data omitted

or processed in wrong
period.

Errors not numerous or of
consequence.

Reports and documents
produced soon enough to
meet operational needs.

(continues)

WORK PAPER 9-3 (continued)

SIGNIFICANT
CHARACTERISTICS

INDICATIVE OF
HIGH RISK

INDICATIVE OF
MEDIUM RISK

INDICATIVE OF
LOW RISK

COMMENTS

d) Accessibility of details
(to answer inquiries,
review for
reasonableness, make
corrections, etc.)

e) Reference to source
documents (audit trail)

f) Conformity with
established system
specifications

Source data origin and
approval

a) People, procedures,
knowledge, discipline,
division of duties, etc.
in departments that
originate and/or
approve data

b) Data control
procedures outside
the information
services organization

c) Error rate

Great difficulty in obtaining
details of transactions or
balances except with

much delay.

Great difficulty in locating
documents promptly.

Actual procedures and
operations differ in
important respects.

Situation leaves much to
be desired.

None or relatively
ineffective; e.g., use of
noncritical fields, loose
liaison with IT department,
little concern with rejected
items.

Over 7% of transactions
rejected after leaving
source data department.

Complete details available
monthly; in interim, details
available with some
difficulty and delay.

Audit trail excellent; some
problems with filing and
storage.

Limited tests indicate that
actual procedures and
operations differ in only
minor respects and
operations produce
desired results.

Situation satisfactory, but
could stand some
improvement.

Control procedures based
on noncritical fields;
reasonably effective liaison
with IT department.

4-7% of transactions
rejected after leaving
source data department.

Details readily available.

Audit trail excellent; filing
and storage good.

Limited tests indicate
actual procedures and
operations produce
desired results.

Situation satisfactory.

Control procedures
include critical fields; good
tie-in with IT department;
especially good on
rejected items.

Less than 4% of
transactions rejected after
leaving source data
department.

WORK PAPER 9-3

(continued)

SIGNIFICANT
CHARACTERISTICS

INDICATIVE OF
HIGH RISK

INDICATIVE OF
MEDIUM RISK

INDICATIVE OF

LOW RISK COMMENTS

d) Error backing

Input data control (within
IT department)

a) Relationship with
external controls

b) Selection of critical
control fields

c) Controls over key
transcription

Data validation
a) Edit tests

b) Sophistication

Many 30-day-old items.

Loose liaison with external
control units; little concern
with rejected items; batch
totals not part of input
procedures; only use
controls like item counts;
no control totals of any
kind.

Control based on
noncritical fields.

Control based on batch
totals.

Alphanumeric tests.

Simple, based on edit of
one field at a time.

Mostly 10-15-day-old
items.

Reasonably effective
liaison with external data
control units; good control
over new items, but less
satisfactory control over
rejected items; batch
totals received, but
generated by computer.

Control based on a
mixture of critical and
noncritical fields, with
effective supplementary
checks.

Control based on
transmittal sheets; batch
totals and key verification
of critical fields not batch
controlled.

Range and alphanumeric
tests.

Simple editing, plus some
editing based on the
interrelationship of two
fields.

Items primarily less than 7
days old.

Good tie-in with external
control units for both valid
and rejected items; batch
totals received as part of
input process.

Control established on
critical fields.

Control based on
transmittal sheets; batch
totals maintained on data
logs; key verification of all
critical fields; written
“sign-off” procedures.

Range, alphanumeric, and
check-digit tests.

Simple editing, plus
extensive edit tests based
on the interrelationship of
two or more fields.

(continues)

WORK PAPER 9-3

(continued)

SIGNIFICANT
CHARACTERISTICS

INDICATIVE OF
HIGH RISK

INDICATIVE OF
MEDIUM RISK

INDICATIVE OF
LOW RISK

COMMENTS

c) Application to critical
data

d) Error balancing,
retrieval, and
correction procedures

Computer processing
control procedure

a) Controls within
machine room

b) Manual and electronic
safeguards against
incorrect processing
of files

c) Recording of run-to-
run debit, credit, and
balance totals for both
transaction
processing and
master field records

d) Documentation status

e) System test practices

A considerable amount of
critical data is not edited.

Error rejected by system
and eliminated from
controls; treated as new
items when reintroduced.

Informal operating
instructions.

Tape library controls by
serial number; no
programmed checks.

Run-to-run totals not used.

Poor or no standards;
uneven adherence; not
part of system and
program development.

Some transaction paths
not tested.

A few critical fields are
edited only indirectly.

Number and value of
rejected items carried in
suspense account without
electronically maintained
details.

Written operating
procedures.

Tape library controls by
serial number;
programmed checks
applied to file
identification.

Run-to-run totals printed
and compared manually.

Adequate practices not
uniformly adhered to;
documentation done “after
the fact.”

Each transaction path
tested individually.

Editing performed on
critical fields.

Error carried in suspense
account in total and in
detail until removed by
correction.

Operations are based
on a schedule and use
up-to-date instructions.

Programmed label check
applied to serial number,
expiration date, and the
identification.

Run-to-run totals printed
and compared by
program.

Excellent standards
closely adhered to and
carried out as part of
system and program
development.

Each transaction path
tested in combination with
all other transactions.

WORK PAPER 9-3

(continued)

SIGNIFICANT
CHARACTERISTICS

INDICATIVE OF
HIGH RISK

INDICATIVE OF
MEDIUM RISK

INDICATIVE OF

LOW RISK COMMENTS

Output control

a) Quantitative controls

b) Qualitative controls

c) Distribution controls

Online processing controls

a) Data transmission
controls, including
error detection, error
recovery, and data
security

Virtually nonexistent.

Documents and reports
accepted virtually
without review.

No routine report
distribution procedures.

The front-end control
program does not validate
operator identification
codes or message
sequence number, and
does not send
acknowledgment to
origin.

Hard to tie back meaning-
fully to input controls.

Documents and reports
receive limited review.

Routine procedures for
distribution limited to list of
users and frequency of
report delivery.

The front-end control
program checks terminal
and operator identification
codes and message
sequence number, sends
acknowledgment to
origin, and provides a
transaction log.

Tied back to input
controls.

Documents and reports
tested in detail, in addition
to receiving a “common
sense” review of
reasonable data limits.

Written procedures
requiring that control log
indicate receipt by user,
time of accounting for
each copy, etc.

The front-end control
program validates
terminal/operator
identification codes plus
transaction authorization
codes and message
sequence number and
count, corrects errors,
sends acknowledgment
to origin, and provides log
of transactions plus copies
of updated master file
records.

(continues)

WORK PAPER 9-3

(continued)

SIGNIFICANT
CHARACTERISTICS

INDICATIVE OF
HIGH RISK

INDICATIVE OF
MEDIUM RISK

INDICATIVE OF
LOW RISK

COMMENTS

b) Data validation
controls, including
error detection and
correction

c) Information services
controls, including
error detection,
transaction processing,
master file processing,
and file recovery
provisions

Neither the front-end
control nor the application
processing program
checks for authorization
approval codes; no check
digits are used with
identification keys; little
use of extensive data
relationship tests;
erroneous transactions are
rejected without analysis
or suspense entry.
Application program
produces a total number
of transactions processed;
no master file processing
controls; file recovery
provisions limited to
periodic copy of

master file.

The application program
checks approval codes for
key transaction types only,
but check digits are not
used with identification
keys; extensive data
relationship tests

are used; erroneous
transactions are sent back
to terminal with a note,
butno suspense entry

is made.

Application program
produces a summary
record of all debit and
credit transactions
processed; no master file
processing controls; file
recovery provisions limited
to transaction log and
periodic copy of master file.

The application program
validates approval codes
for all transactions, and
check digits are used with
identification keys; data
relationship tests are used
extensively; erroneous
transactions are noted in
error suspense file when
sent back to terminal
with note.

Stored validation range
values are used to validate
transaction fields;
application program
summarizes all
transactions processed by
type, with credit and debit
values for each terminal,
and uses a master file
control trailer record that
is balanced by program
routine; end-of-processing
file recovery provisions
include transaction log of
active master file records.

WORK PAPER 9-4 Design Phase Test Process

TEST FACTOR: Data Integrity Controls Designed

control totals prepared?

For key entry input transactions,
such as purchase orders, are
batch numbers prepared to
ensure that batches of input are
not lost?

. Are check digits or equivalent
controls used on key control
fields, such as product number,
to ensure the accurate entry of
product number?

Verify the adequacy of the batch numbering
procedures.

Verify that key fields use procedures that ensure
the accurate entry of that information.

Requirements

Requirements

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

. Are controls established over Review the adequacy of the transaction origination Control Risk matrix &
accuracy and completeness accuracy and completeness control. Checklist
during the transaction origination
process?

. Are input transactions controlled, Review the adequacy of the input controls to Control Risk matrix &
such as through a sequential ensure that all input is entered. Checklist
input number, to ensure that all
transactions are entered?

. Are communication controls Review the adequacy of transmission accuracy and Control Risk matrix &
established to ensure the completeness controls. Checklist
accurate and complete
transmission of data?

For key entry transactions, such Verify the adequacy of the batch control total Requirements| Control flow
as cash receipts, are batch procedures. analysis

Control flow
analysis

Error guessing
& Design-
based
functional
testing

(continues)

WORK PAPER 9-4 (continued)

TEST FACTOR: Data Integrity Controls Designed (continued)

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
7. Is each field subject to extensive Examine the type and scope of data validation Error Acceptance test
data validation checks? checks for each key field to determine that they are | handling criteria, Error
adequate. guessing.
Checklist, &
Data dictionary
8. Are input numbers, batch Verify that the controls established at the time of Control Inspections
numbers, and batch totals manual input preparation are verified by the
verified by the data validation computer program.
programs to ensure the accurate
and complete input of
transactions?

WORK PAPER 9-4 (continued)

TEST FACTOR: Authorization Rules Designed

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST

TEST CRITERIA quate quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
Has the method for authorizing Review the documentation to ensure authorization Security Checklist &
each transaction been rules are complete. Inspections
documented?
For those documents whose Determine that for transactions whose entry itself Security Checklist, Error
authorization is dependent upon indicates authorization, that those transactions can guessing, &
the source of origination as only originate from the properly authorized source. Inspections
opposed to a signature, can that
source of origination be verified
by the application system?
In a multiuser system, has Determine the adequacy of the assigned Control Inspections &

responsibility for authorization
been assigned to a single
individual?

Is the authorization method
consistent with the value of the
resources being authorized?

If passwords are used for
authorization, are procedures
adequate to protect passwords?
If passwords are used, will they

be changed at reasonable
frequencies?

authorization responsibilities in a multiuser system.

Review the reasonableness of the authorization
method in relationship to the resources being
controlled.

Review the adequacy of the password protection
procedures.

Determine the reasonableness of the frequency for
changing passwords.

Requirements

Control

Control

Fact finding

Cause effect

graphing,
Walkthroughs,
& Scoring

Error guessing

Error guessing

(continues)

WORK PAPER 9-4 (continued)

TEST FACTOR: Authorization Rules Designed (continued)

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
7. Are the authorization rules Examine the documentation for verifying Security Checklist, Risk
verified by the automated authorization rules. matrix, &
segment of the application? Inspections
8. Are procedures established to Examine the reasonableness of the procedure to Control Error guessing

report authorization violations to
management?

report authorization violations to management.

& Inspections

WORK PAPER 9-4 (continued)

TEST FACTOR: File Integrity Controls Designed

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
. Have the fields been identified Confirm with users that there are sufficient file Control Error guessing

that will be used to verify file
integrity?

. Are procedures established to
verify the integrity of key files?

. Are procedures established to
verify the integrity of files on a
regular basis?

. Are procedures established to
report file integrity variances to
management?

. For key files, such as cash
receipts, have procedures been
establishment to maintain
independent control totals?

. Have procedures been
established to reconcile
independent control totals to the
totals produced by the
automated segment?

. Will the independent control
totals be reconciled regularly to
the automated control totals?

integrity checks based upon the importance of
data.

Examine the documentation indicating the file

integrity verification procedures to determine they

are adequate.

Confirm with the user that the file integrity
verification frequency is adequate to protect the
integrity of the file.

Examine the specifications and procedures for

reporting file integrity variances to management.

Verify for key files that independent control total
procedures are adequate.

Verify the adequacy of the reconciliation
procedures.

Confirm with the user that the frequency of
independent reconciliation is adequate.

Requirements

Requirements

Control

Control

Control

Requirements

Confirmation/
examination

Inspections

Confirmation/
examination

Inspections

Checkpoint &
Inspections

Cause-effect

graphing,
Checklist, &
Desk checking

Confirmation/
examination

(continues)

WORK PAPER 9-4 (continued)

TEST FACTOR: File Integrity Controls Designed (continued)

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
8. Are simple accounting proofs Review the adequacy of the methods to ensure that | Error Boundary value
performed regularly to ensure updating is performed correctly. handling analysis &
that the updating procedures are Desk checking

properly performed?

WORK PAPER 9-4 (continued)

TEST FACTOR: Audit Trail Designed

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
. Have the detailed specifications Review the completeness of the documentation in Requirements| Walkthroughs

been documented for each
audit trail objective?

. Have the data fields and records

for each audit trail been defined?

. Has the length of time to save
each audit trail been defined?

. Have the instructions been defined

for utilizing the audit trail?

. Does the audit trail include

both the manual and automated
segments of the system?

. Is the audit trail stored in a

sequence and format making the
retrieval and use easy?

. Will sufficient generations of the
audit trail be stored away from the
primary site so that if the primary
site is destroyed processing can be
reconstructed?

. Have procedures been established
to delete audit trails in the
prescribed manner at the
completion of their usefulness?

relationship to the audit trail objectives.

Review the reasonableness of the included data
fields to satisfy the audit trail objective.

Verify that the length of time is consistent with the
organization’s record retention policy.

Review the completeness of the specifications to
instruct people in using the audit trail.

Review the audit trail specifications to verify that
both the manual and automated segments are
included.

Confirm with audit trail users that the form and
sequence are consistent with the use they would
make of the audit trail.

Examine the adequacy of the off-site facility.

Assess the adequacy of the audit trail destruction
procedures.

Requirements

Control

Requirements

Requirements

Requirements

Requirements

Requirements

Walkthroughs

Confirmation/
examination &
Fact finding
Checklist &
Data flow
analysis
Flowchart &
Tracing

Confirmation/
examination &
Fact finding

Inspections

Checklist &
Error guessing

(continues)

WORK PAPER 9-4 (continued)

TEST FACTOR: Contingency Plan Designed

developed at the time the
application goes operational?

contingency plan to ensure it will be complete
when the system goes operational.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

. Has responsibility for the Verify that the assigned individual has the sufficient | Operations Fact finding
preparation of a contingency skills and time to prepare a contingency plan.
plan been assigned?

. Does the contingency plan Confirm with the computer operations manager that | Operations Error guessing
define all of the causes of failure? the list of potential failures is complete. &

Confirmation/
examination

. Does the contingency plan Review the completeness of the assigned Operations Checklist
define responsibilities during the responsibilities.
contingency period?

. Does the contingency plan Confirm with the computer operations manager that | Operations Confirmation/
identify contingency resources? the assigned resources will be available in the examination

event of a failure.

. Does the contingency plan Confirm with a member of executive management Recovery Confirmation/
predetermine the operating that the recovery priorities are reasonable. examination
priorities after a problem?

. Are all the parties involved in a Review the list of contingency plan participants for Recovery Checklist
failure included in the development completeness.
of the contingency plan?

. Are procedures established to Review the adequacy of the contingency plan test Recovery Checklist &
test the contingency plan? procedures. Disaster test

. Will the contingency plan be Review the schedule for developing the Recovery Inspections

WORK PAPER 9-4 (continued)

TEST FACTOR: Method to Achieve Service Level Designed

resources be installed to meet
the service levels as the volumes
increase?

computer resources will be increased in proportion
to increased volumes of data.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
. Can the system design achieve Either confirm the reasonableness with computer Execution Confirmation/
the desired service level? operations personnel or run a simulation of the examination &
system to verify service levels. Modeling
Do peak period volumes impact Develop a simulation to test service levels based Execution Modeling
upon the desired service level? upon maximum processed volumes.
. Can user personnel manually Develop a model to demonstrate the amount of Execution Modeling
handle their part of peak volume time required to perform the manual part of
periods? processing.
. Will expected errors impact upon Determine the expected number of errors and Execution Checklist, Error
service levels? include that in the system simulation. guessing,
Inspections, &
Modeling
Has the cost of failing to achieve Confirm with users that the cost of failure to meet Execution Confirmation/
service levels been determined? service levels has been calculated. examination
. Are desired and projected Examine the requests for system changes and Execution Inspections &
service levels recalculated as the determine their impact on the service level. Modeling
system is changed?
. Are procedures established to Review the adequacy of the monitoring procedure. Execution Checklist &
monitor the desired service level? Inspections
. Will sufficient computer Confirm with the computer operations manager that | Operations Confirmation/

examination &
Fact finding

(continues)

WORK PAPER 9-4 (continued)

TEST FACTOR: Access Procedures Designed

protect sensitive data?

design to protect sensitive data.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
Have advanced security Confirm with the individual responsible for data Security Confirmation/
techniques such as security that advanced security measures have been examination
cryptography been considered? been considered and implemented where necessary.
Have operating software features Confirm with system programmers that a systematic | Security Risk matrix &
been evaluated for security purposes process was used to evaluate systems software Confirmation/
and implemented where necessary? features needed for security. examination
Have procedures been designed Confirm with the data security officer the adequacy | Security Risk matrix &
to protect the issuance and of password protection procedures. Confirmation/
maintenance of passwords? examination
. Are procedures defined to Review the adequacy of the procedures to monitor Control Checklist &
monitor security violations? security violations. Fact finding
Does senior management intend Confirm with senior management their intent to Control Confirmation/
to prosecute security violators? monitor security and prosecute violators. examination
Have the security needs of each Review the completeness and adequacy of the Control Risk matrix &
application resource been defined? security for each application resource. Scoring
Has one individual been Confirm that the individual appointed has sufficient | Security Checklist &
assigned the responsibility for skill and time to monitor security. Confirmation/
security of the application? examination
Is the system designed to Confirm with the user the completeness of the Security Cause-effect

graphing,
Correctness
proof,
Inspections, &
Scoring

WORK PAPER 9-4 (continued)

TEST FACTOR: Design Complies with Methodology

and in compliance with standards?

documentation.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

. Have the appropriate methodology Confirm with the responsible party that the Compliance | Correctness

specifications been determined? specifications are correct. proof, Error
guessing, &
Confirmation/
examination

. Has the required level of compliance Verify that the project complies with the Compliance | Design reviews
to the methodology been achieved? methodology.

. Will the standards, policies, etc. Confirm with the involved parties that they will Compliance | Confirmation/
be monitored during monitor compliance to the methodology. examination &
implementation? Fact finding

. Has the cost of compliance been Review with the involved parties the cost/benefit of | Compliance | Fact finding
determined so that it can be compliance.
measured against the benefit,
sanction, etc.?

. Are procedures established to Review the adequacy of the specified method of Compliance | Fact finding
substantiate compliance to the substantiating compliance.
methodology?

. Will the methodology be in use Confirm with IT management the applicability Compliance | Confirmation/
when the system becomes of using all or part of the methodology based on examination
operational? the application’s expected implementation date.

. Have deviations from the Verify variances from the methodology are Compliance | Design
methodology been documented approved. reviews &
and approved? Confirmation/

examination

. Is design documentation adequate Verify the completeness and adequacy of design Compliance | Design reviews

(continues)

WORK PAPER 9-4 (continued)

TEST FACTOR: Design Conforms to Requirements

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has the systems design group Examine all of the program change requests to Requirements | Confirmation/

made changes to the application verify they have been approved by the user. examination
system without gaining user
approval?

2. Is there a formal change request Examine the adequacy and compliance to the Control Checklist &
procedure that must be followed program change procedure. Inspections
to make all system changes?

3. Are the objectives of the system Determine the effect of the approved system Requirements | Inspections &
reevaluated and changed where changes on the objectives, and determine if the Walkthroughs
necessary based on each objectives have been changed accordingly.
approved change request?

4. Does the user continually Confirm with the user that the objectives are Requirements | Acceptance
reevaluate the application updated based on changing business conditions. test criteria,
system objectives in regard to Confirmation/
changing business conditions? examination, &

Fact finding

5. Are user personnel heavily Confirm with the information services project Requirements | Confirmation/
involved in the design of the personnel that the user is heavily involved in the examination &
application system? system design. Fact finding

6. If user management changes, Verify that the design specifications achieve the Requirements | Acceptance

does the new management
reconfirm the system objectives?

intent of the application requirements.

test criteria,
Confirmation/
examination

WORK PAPER 9-4 (continued)

TEST FACTOR: Design Conforms to Requirements (continued)

ASSESSMENT

Very Ade- | Ade- Inade-
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST

TEST
TECHNIQUE

TEST
TOOL

7. If the objectives are changed, is Verify that the criteria to measure the objectives
the means of measuring those are reasonable.
objectives changed accordingly?

8. Do the design specifications Verify that the design specifications achieve the
achieve the intent of the intent of the application requirements.
requirements?

Requirements

Requirements

Acceptance
test criteria,
Cause-effect
graphing,
Design-based
functional
testing,
Executable
specs, &
Symbolic
execution

Correctness
proof, Data
flow analysis,
Design-based
functional
testing, Desk
checking,
Executable
specs, &
Symbolic
execution

(continues)

WORK PAPER 9-4 (continued)

TEST FACTOR: Design Facilitates Use

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
. Have the people tasks been defined? Examine the manual processing documentation. Manual Inspections
support
. Are the tasks realistic based on Review the application system processing. Manual Peer review
the skill level of the people? support
3. Is the timing of the tasks realistic? Calculate the adequacy of manual turnaround time. Requirements | Modeling
. Will the information needed to Confirm with users the expected availability of Requirements | Confirmation/
do the people tasks be available? needed information. examination
. Is the workload reasonable Estimate the time required to complete assigned Requirements | Modeling

based on the expected staffing?

. Have the people involved been
presented their tasks for comment?

. Could some of the people tasks
be better performed on the
computer?

. Will adequate instruction manuals
be prepared for these tasks?

tasks.

Confirm with users their independence in systems
design.

Review the application system processing.

Review the design specifications for preparation of
instruction manuals.

Manual
support

Requirements

Manual
support

Confirmation/
examination
Cause-effect
graphing &
Error guessing
Checklist

WORK PAPER 9-4 (continued)

TEST FACTOR: Design Is Maintainable

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Is system design logically Review the application design structure. Compliance | Peer review
constructed?

2. Are data attributes fully defined? Examine the data documentation for completeness. | Compliance | Inspections

3. Is computer logic presented in Review the application system logic. Compliance | Peer review
an easy-to-follow manner?

4. Are changes to the system Trace changes to the system specifications. Compliance | Inspections
incorporated into the design
documentation?

5. Have areas of expected high Review the maintainability of logic in areas of Compliance | Fact finding
frequency of change been expected high change.
designed to facilitate maintenance?

6. Are business functions designed Review the application design structure. Compliance | Inspections
using a standalone concept?

7. Is design documentation Examine the design documentation for usability. Compliance | Inspections
complete and usable?

8. Are maintenance specialists Confirm with maintenance specialists that they Compliance | Confirmation/
involved in the design process? are involved in the design process. examination

(continues)

WORK PAPER 9-4 (continued)

TEST FACTOR: Design Is Portable

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Does the design avoid Review hardware specifications for special features. Operations Inspections
specialized hardware features?

2. Does the design avoid Review software specifications for special features. Operations Inspections
specialized software features?

3. Will the system be coded in a Examine coding rules for the project. Operations Fact finding
common computer language?

4. Will the system be restricted to Examine coding rules for the project. Operations Fact finding
common features of the
language?

5. Does the system avoid the use Review software specifications for specialized Operations Inspections
of specialized software software.
packages?

6. Are data values restricted to Review data documentation for type of data Operations Inspections
normal data structures? structure used.

7. Does documentation avoid Review documentation for use of specialized Operations Inspections
specialized jargon? jargon.

8. Have the portability Review the adequacy of the portability Operations Inspections
implementation considerations documentation.
been documented?

WORK PAPER 9-4 (continued)

TEST FACTOR: Interface Design Complete

been exchanged with interfaced
applications?

documentation has been exchanged.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
. Have the transactions to be Examine interfaced input data documentation. Intersystems | Checklist
received from other applications
been defined?
. Have the transactions going to Examine interfaced output data documentation. Intersystems | Checklist
other applications been defined?
. Has the timing of interfaced Review system specifications for definition of Intersystems | Flowchart
transactions been defined? timing.
. Is the timing of interfaced Confirm with interfaced application personnel that Operations Confirmation/
transactions realistic? timing is reasonable. examination
. Has the media for transferring Review system specifications for documentation of Operations Inspections
data to interfaced applications media.
been defined?
. Are common data definitions Compare common data definitions of interfaced Control Fact finding
used on interfaced data? applications.
. Are common value attributes Compare common value attributes of interfaced Control Fact finding
used on interfaced data? applications.
. Has interface documentation Confirm with interfaced projects that Intersystems | Confirmation/

examination

(continues)

WORK PAPER 9-4 (continued)

TEST FACTOR: Design Achieves Criteria

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
Have the systems development Confirm with the user that the new system costs Execution Acceptance test
and acceptance criteria costs and acceptance criteria are reasonable. criteria &
been recalculated based on the Confirmation/
systems design? examination
Have the criteria for developing Confirm with the user that the manual effort has Execution Acceptance test
the manual processing segments been defined and the cost confirmed. criteria &
been confirmed? Confirmation/
examination
Has the cost of operating the Confirm with computer operations that the Execution Acceptance
computer programs been operational costs are reasonable. test criteria &
confirmed based on the systems Confirmation/
design? examination
Have the costs to operate the Confirm with the user that the cost to operate the Execution Acceptance
manual segments of the system manual segments of the application are test criteria &
been confirmed? reasonable. Confirmation/
examination
Have the benefits of the system Confirm with the user the reasonableness of the Execution Acceptance
been confirmed based upon the benefits. test criteria &
systems design? Confirmation/
examination
Has the useful life of the system Confirm with the user the reasonableness of the Execution Acceptance

been confirmed based upon the
systems design?

expected life of the application.

test criteria &
Confirmation/
examination

WORK PAPER 9-4 (continued)

TEST FACTOR: Design Achieves Criteria (continued)

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
7. Has the cost-effectiveness of the Confirm with the organization’s accountants that Execution Confirmation/
new system been recalculated if the cost is correct. examination
changes in the factors have
occurred?
8. Does the cost-effectiveness after Confirm with senior management that the system Execution Confirmation/

design warrant the continuance
of the system?

design is still cost-effective.

examination

(continues)

WORK PAPER 9-4 (continued)

TEST FACTOR: Needs Communicated to Operations

notified of the anticipated
workload and other requirements?

of operation requirements.

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL

. Have special hardware needs Review specifications for special hardware needs. Operations Inspections
been defined?

. Have special software needs Review specifications for special software needs. Operations Inspections
been defined?

. Have operations timing Review specifications for operations timing Operations Inspections
specifications been defined? specifications.

. Have system volumes been Confirm with users the reasonableness of Compliance | Confirmation/
projected over an extended time projections. examination
period?

. Have operations capacity Review specifications to determine whether the Operations Checklist
requirements been specified? capacity requirements are reasonable.

. Have computer test requirements Examine test specifications for reasonableness. Operations Fact finding
been specified?

. Have supplies/forms been Review specifications to verify that all supplies/ Operations Fact finding
specified? forms have been identified.

. Has computer operations been Confirm with computer operations their awareness Operations Confirmation/

examination

Step 3: Verification Testing 377

WORK PAPER 9-5 Business System Design Review Checklist?

YES | NO |N/A COMMENTS

Systems Overview

1. Is there a brief description of interfaces with
other systems?
2. Is there an outline of the major functional

requirements of the system?
3. Are the major functions defined into discrete
steps with no boundary overlapping?
4. Have manual and automatic steps been defined?
5. Has the definition of what data is required to

perform each step been indicated along with a
description of how the data is obtained?

System Description

6. Has a system structure chart been developed,
showing the logical breakdown into subsystems
and interfaces with other systems?

7. Have the major inputs and outputs been defined
as well as the functional processing required to
produce the output?

8. Is there a narrative description of the major
functions of the system?
9. Have subsystem functional flow diagrams been

developed showing the inputs, processing, and
outputs relevant to the subsystem?

10. Has subsystem narrative description been
developed?
11. Do the functional outlines follow the logical

structure of the system?

12. Are they hierarchical in nature—that is, by
function and by steps within function?

Design Input and Output Data—Data Structure

13. Has the data been grouped into logical
categories (i.e., customer product, accounting,
marketing sales, etc.)?

14. Has the data been categorized as follows:
a) Static
b) Historical data likely to be changed
¢) Transaction-related

15. Have standard data names (if possible) been
used?
16. Has the hierarchical relationship among data

elements been defined and described?

?Based on case study included in Effective Methods of EDP Quality Assurance.

(continues)

378 Chapter 9

WORK PAPER 9-5 (continued)

YES

NO

N/A

COMMENTS

Design Output Documents

17.
18.

19.

20.

21.
22.
23.

Are there headings?

Do the headings include report titles,
department, date, page number, etc.?

Are the output documents adaptable to current
filing equipment?

Are processing dates, system identification,
titles, and page numbers shown?

Has consideration been given to output devices?
Is each data column identified?

Where subtotals are produced (e.g., product
within customer) are they labeled by control
break?

Design Input Elements

24.
25.

26.
27.
28.

Are the data elements clearly indicated?

Has the source of the data been defined
(department and individual)?

Have input requirements been documented?
Is the purpose of the input document clear?
Is the sequence indicated?

Design Computer Processing

29.

30.

31.

32.

Has each function been described using
functional terminology (e.g., if salary exceeds
maximum, print message)?

Has validity checking been defined with
reference to the data element dictionary?

In cases where the same data may be coming
from several sources, have the sources been
identified as to priorities for selection by the
system?

Has processing been classified according to type
of function (e.g., transaction, calculation,
editing, etc.)?

Design Noncomputer Processing

33.
34.
35.

Has the preparation of input been described?
Has the distribution of output been described?

Has an error correction procedure been
described?

Organizational Controls

36.

Have organizational controls been established?

Step 3: Verification Testing 379

WORK PAPER 9-5 (continued)

YES

NO

N/A COMMENTS

37.

38.
39.

Have controls been established across
department lines?

Have the control fields been designed?

Are there control validation procedures prior to
proceeding to the next step?

Overall System Controls

40.

41.

42.

Have controls been designed to reconcile data
received by the computer center?

Have controls for error correction and reentry
been designed?

Have controls been designed that can be
reconciled to those of another system?

Input Controls

43.

44,

45.

46.

47.

48.

Have some or all of the following criteria been
used for establishing input controls?

a) Sequence numbering
b) Prepunched cards

¢) Turnaround documents
d) Batch numbering

e) Input type

f) Predetermined totals
g) Self-checking numbers
h) Field length checks

i) Limit checks

j) Reasonability checks

k) Existence/nonexistence checks

Do controls and totals exist for:

a) Each value column

b) Cross-foot totals

c) Counts of input transactions, errors,
accepted transactions

d) Input transactions, old master, new master

Are the results of all updates listed for each
transaction showing the before and after
condition?

As the result of an update, are the number of
adds, deletes, and changes processed shown?

If relationship tests have been used, are they
grouped and defined?

Have control total records been utilized to
verify that all records have been processed
between runs?

(continues)

380 Chapter 9

WORK PAPER 9-5 (continued)

YES

NO

N/A

COMMENTS

Output Controls

49.
50.

System
51.
52.

53.
54.

55.
56.

57.
58.
59.
60.

61.

Have output controls been established for all
control fields?

Is there a separate output control on errors
rejected by the system?

Test Plan
Have acceptance criteria been identified?

Has a tentative user acceptance strategy been
developed?

Have test data requirements been defined?

Have data element dictionary forms been
completed?

Have organizational changes been defined?

Have new organizational charts or new
positions been required?

If required, have areas for special user
procedures been identified?

Has a timetable for operating the system been
developed?

Were separate timetables developed for
different cycles (weekly, monthly)?

Has the documentation been gathered and
organized?
Has a financial analysis been performed?

Plan User Procedures—Conversion Design

62.

63.

64.

65.

66.

67.

68.

Have the scope, objectives, and constraints
been developed?

Has a plan for user procedures and conversion
phases been completed?

Has the plan been broken down into
approximate work units (days) to serve as a
basis for a schedule for the other phases?

Have the resources and responsibilities been
arranged?

Have schedules been prepared for the next
phases?

Have appropriate budgets for the next phases
been prepared?

Has a project authorization been properly
prepared for remaining phases?

Step 3: Verification Testing 381

WORK PAPER 9-6 Computer Systems Design Review Checklist®

YES

NO

N/A COMMENTS

Develop Outline Design

1.

w

10.

11.

12.

13.

14.

15.

16.

17.

*ibid.

Has a detailed review of the business system
design resulted in requiring additional
information or changes?

Have these revisions been reviewed by the user?
Have existing sources of data been identified?
Has a data management alternative been

considered because of the nature of the system?

Have the data elements been grouped by
category?

Have the record layout forms been used for
listing the data elements?

Has the file description form been used to show
the characteristics of each file?

Have the access methods been determined?

Has use been made of blocking factors to
reduce accesses for a sequential file?

If a database has been used, has the
relationship between segments (views of the
database) been included?

If new data elements have been required, have
they been included as part of the data
dictionary?

Has the description of processing been
translated into system flowcharts showing
programs and their relationships, as well as
reports?

Has the processing been isolated by frequency
as well as function?

Does each file requiring updating have an
associated, unique transaction file?

Does each main file have a separate validation
and update function?

Have the following been addressed in order to
reduce excessive passing of files:

a) Sort verbs (statements)
b) Input procedure

¢) Output procedure

d) Random updating

Has a matrix been prepared showing which
programs create, access, and update each file?

(continues)

382 Chapter 9

WORK PAPER 9-6 (continued)

YES

NO

N/A

COMMENTS

18.

19.

20.

21.

22.

23.

Has a separate section been set up for each
program in the system showing:

a) Cover page showing the program name,
systems and/or subsystem name, run
number, and a brief description of the
program

b) Input/output diagram

¢) Processing description

Does the processing description contain a brief

outline of the processing that the program is
going to perform?

Has the content and format of each output
been defined?

Has the content and format of each input
been defined?

Have data items been verified against to the
rules specified in the data dictionary?

Have transactions that update master files been
assigned record types?

Hardware/Software Configuration

24.

25.

26.

Does the hardware configuration show the
following:

a) CPU

b) Minimum core storage

¢) Number and type of peripherals

d) Special hardware

e) Numbers of tapes and/or disk packs

f) Terminals, minicomputers, microfilm,
microfiche, optical scanning, etc.

Has the following software been defined:

a) Operating system

b) Telecommunications

c¢) Database management

If telecommunications equipment is involved,

has a communications analyst been consulted
regarding type, number, speed, etc.?

File Conversion

27.

28.

29.

30.

Have the file conversion requirements been
specified?

Have program specifications for the file
conversion programs been completed?

Can the main program(s) be utilized to
perform the file conversion?

Has a schedule been established?

Step 3: Verification Testing 383

WORK PAPER 9-6 (continued)

YES

NO

N/A

COMMENTS

Design System Tests

31.
32.

33.
34.

35.
36.
37.

38.

39.

40.

41.
42.

43.

Has the user’s role for testing been defined?

Have responsibilities and schedules for preparing
test data been agreed to by the user?

Has the input medium been agreed to?
Is special hardware/software required, and if

so, will programmers and/or users require
additional training?

Have turnaround requirements been defined?
Have testing priorities been established?

If an online system, has an investigation of
required space as opposed to available space
been made?

Has an analysis of the impact upon interfacing
systems been made and have arrangements
been made for acquiring required information
and data?

Have testing control procedures been
established?

Has the possibility of utilizing existing code
been investigated?

Has a system test plan been prepared?

Has the user prepared the system test data as

defined by the conditions to be tested in the
system test plan?

Has computer operations been consulted
regarding keypunching and/or verification?

Revise and Complete Design

44,

45.

46.

Have all required forms from previous phases as
well as previous task activities in this phase
been completed?

Has the processing description for program
specifications been categorized by function?

For validation routines, have the editing rules
been specified for:

a) Field format and content (data element
description)

b) Interfield relationships

c) Intrafield relationships

d) Interrecord relationships

e) Sequence

f) Duplicates

g) Control reconciliation

(continues)

384 Chapter 9

WORK PAPER 9-6 (continued)

YES

NO

N/A

COMMENTS

47.

48.

49.

50.

51.

52.

Have the rejection criteria been indicated for
each type of error situation, as follows:

a) Warning message but transaction is accepted

b) Use of the default value

c) Outright rejection of record within a
transaction set

d) Rejection of an entire transaction

e) Rejection of a batch of transactions

f) Program abort

Have the following validation techniques been
included in the specifications:

a) Validation of entire transaction before any
processing

b) Validation to continue regardless of the
number of errors on the transaction unless
a run abort occurs

c) Provide information regarding an error so
the user can identify the source and
determine the cause

Has a procedure been developed for correction
of rejected input either by deletion, reversal,
or reentry?

Do the specifications for each report (output)
define:

a) The origin of each item, including the rules
for the selection of optional items

b) The rules governing calculations

c) The rules for printing and/or print
suppression

Have the following been defined for each
intermediate (work) file:

a) Origins or alternative origins for each element

b) Calculations

c) Rules governing record types, sequence,
optional records, as well as inter- and
intrarecord relationships

Have the following audit controls been built in
where applicable:

a) Record counts (in and out)

b) Editing of all source input

c) Hash totals on selected fields

d) Sequence checking of input files
e) Data checking

f) Listing of errors and review

g) Control records

Step 3: Verification Testing 385

WORK PAPER 9-6 (continued)

YES

NO

N/A

COMMENTS

Determine Tentative Operational Requirements

53.

54.

55.

Has the impact of the system upon existing
computer resources been evaluated?

Have the computer processing requirements
been discussed with computer operations?

Have backup procedures been developed?

Online Systems

56.

57.

58.

59.
60.

61.

62.

63.

64.

Have testing plans been discussed with computer
operations to ensure that required resources
(core, disk space) for “sessions” will be available?

Have terminal types been discussed with
appropriate technical support personnel?

Have IMS considerations (if applicable) been
coordinated with computer operations,
technical support, and DBA representatives?

Has a user training program been developed?
Have run schedules been prepared to provide
computer operations with the basic information
necessary to schedule computer usage?

Have run flowcharts including narrative (where
required) been prepared?

Have “first cut” estimates of region sizes, run
times, etc. been provided on the flowcharts or
some other documentations?

Have restart procedures been described for
each step of the job?
Have restart procedures been appended to

the security and backup section of the
documentation?

Plan Program Design

65.

66.

67.

68.

69.

Has all relevant documentation for each
program been gathered?

Has the sequence in which programs are to be
developed been defined in accordance to the
system test plan?

Has the number of user and project personnel
(including outside vendors) required been
ascertained?

Has computer time required for program
testing (compiles, test runs) been estimated?
Have data preparation requirements been
discussed with computer operations regarding
data entry?

(continues)

386 Chapter9

WORK PAPER 9-6 (continued)

YES

NO

N/A

COMMENTS

70. Has a development cost worksheet been
prepared for the next phase or phases?
71. Have personnel been assigned and project

work schedules been prepared?

72. Has the project schedule and budget been
reviewed and updated?

Prepare Project Authorization

73. Has a project authorization form been
completed?

Step 3: Verification Testing 387

WORK PAPER 9-7 Quality Control Checklist

YES | NO | N/A COMMENTS

10.

11.

12.

13.

14.

15.

16.

17.

18.

Is the test team knowledgeable in the
design process?

Are the testers experienced in using design
tools?

Have the testers received all of the design
phase deliverables needed to perform this
test?

Do the users agree that the design is
realistic?

Does the project team believe that the
design is realistic?

Have the testers identified the success
factors, both positive and negative, that
can affect the success of the design?

Have the testers used those factors in
scoring the probability of success?

Do the testers understand the 15 design-
related test factors?

Have the testers analyzed those design test
factors to evaluate their potential impact
on the success of the design?

Do the testers understand the design
review process?

Has a review team been established that
represents all parties with a vested interest in
the success of the design?

Does management support using the
design review process?

Is the design review process conducted
at an appropriate time?

Were the items identified in the design
review process reasonable?

Does the project team agree that the
identified items need to be addressed?

Does management support performing
inspections on project rework?

Has appropriate time been allotted in the
project scheduling for performing
inspections?

Have the individuals responsible for
project rework been educated in the
importance of participating in the
inspection process?

(continues)

388 Chapter 9

WORK PAPER 9-7 (continued)

YES

NO

N/A

COMMENTS

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Does management view inspections as an
integral part of the process rather than as
an audit to identify participants’
performance?

Has the inspection process been planned?

Have the inspectors been identified and
assigned their specific roles?

Have the inspectors been trained to
perform their role?

Have the inspectors been given the
necessary materials to perform the review?

Have the inspectors been given adequate
time to complete both the preparation and
the review meeting inspection process?

Did the individual inspectors adequately
prepare for the inspection?

Did the individual inspectors prepare a
defect list?

Was the inspection scheduled at a time
convenient for all inspectors?

Did all inspectors come to the inspection
meeting?

Did all inspectors agree on the final list of
defects?

Have the inspectors agreed upon one of
the three acceptable inspection dispositions
(i.e., certification, reexamination, or
reinspection)?

Were the defects identified during the
review meeting recorded and given to the
author?

Has the author agreed to make the
necessary corrections?

Has a reasonable process been developed
to determine that those defects have been
corrected satisfactorily?

Has a final moderator certification been

issued for the product/deliverable
inspected?

WORK PAPER 9-8

Initial Supplier Capability Assessment

TEST FACTOR: Data Integrity Controls Implemented

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
. Have procedures been written Examine the usefulness of data error messages. Manual Correctness
indicating how to record support proof,
transactions for entry into the Exhaustive
automated system? testing, &
Flowchart
. Have data validation checks Review the completeness of the data validation Requirements| Compiler-

been implemented to ensure that
input complies with system
specifications?

. Have anticipation controls been
installed, where appropriate, to
ensure that valid, but
unreasonable, data is noted for
manual investigation?

. Are errors properly identified
and explained so that follow-up
action can be readily
conducted?

. Have procedures been
established to take corrective
action on data errors?

. Are procedures established to
ensure that errors are corrected
on a timely basis?

checks.

Examine the extensiveness of anticipation controls
to identify potential problems.

Examine the completeness of the data entry
procedures.

Examine the reasonableness of the procedures to
take corrective action on identified errors.

Verify that the procedures will ensure that errors are
corrected on a timely basis.

Error
handling

Error
handling

Error
handling

Error
handling

based analysis,
Data dictionary,
& Inspections
Correctness
proof, Error
guessing, &
Inspections

Exhaustive
testing
Cause-effect
graphing

Correctness
proof &
Flowchart

(continues)

WORK PAPER 9-8 (continued)

TEST FACTOR: Data Integrity Controls Implemented

ASSESSMENT
Very Ade- | Ade- Inade- TEST TEST
TEST CRITERIA quate | quate | quate | N/A RECOMMENDED TEST TECHNIQUE TOOL
7. Are run-to-run controls installed Examine the reasonableness of the procedures that Requirements| Control flow

to ensure the completeness and
accuracy of transactions as they
move from point to point in the
system?

8. Have procedures been
implemented to ensure that
complete and accurate input is
recorded?

ensure accuracy and completeness of transactions
as they flow through the system.

Verify the adequacy of the procedures to ensure
that controls established during data origination are
verified during processing.

Control

analysis & Data
flow analysis

Correctness
proof &
Exhaustive
testing

WORK PAPER 9-8 (continued)

