
Real Time System

KAPITA SELEKTA TEKNIK KOMPUTER

AGUS MULYANA

EMAIL : AGUS.MULYANA@EMAIL.UNIKOM.AC.ID

WA : 082116871007

1

mailto:agus.mulyana@email.unikom.ac.id

Definition

Real-time embedded systems are defined as
those systems in which the correctness of the
system depends not only on the logical result
of computation, but also on the time at which
the results are produced.

 Hard real-time systems (e.g., Avionic control).

 Firm real-time systems (e.g., Banking).

 Soft real-time systems (e.g., Video on
demand).

2

3

Deadline 4

•Hard deadline: penalty due to missing deadline is a higher
order of magnitude than the reward in meeting the
deadline

•Firm deadline: penalty and reward are in the same order
of magnitude

•Soft deadline: penalty often lesser magnitude than
reward

A typical real-time embedded

system
5

Car example

 Mission: Reaching the destination safely.

 Controlled System: Car.

 Operating environment: Road conditions.

 Controlling System

- Human driver: Sensors - Eyes and Ears of the driver.

- Computer: Sensors - Cameras, Infrared receiver, and Laser
telemeter.

 Controls: Accelerator, Steering wheel, Break-pedal.

 Actuators: Wheels, Engines, and Brakes.

6

Car example (contd)

 Critical tasks: Steering and breaking.

 Non-critical tasks: Turning on radio.

 Cost of fulfilling the mission → Efficient
solution.

 Reliability of the driver → Fault-tolerance
needs to be considered.

7

Real-Time Tasks

 Periodic tasks

- Time-driven. Characteristics are known a priori

- Task Ti is characterized by (pi, ci)

E.g.: Task monitoring temperature of a patient.

 Aperiodic tasks

- Event-driven. Characteristics are not known a priori

- Task Ti is characterized by (ai, ri, ci, di)

E.g.: Task activated upon detecting change in patient’s condition.

 Sporadic Tasks

 Aperiodic tasks with known minimum inter-arrival time.

pi : task period ai : arrival time ri : ready time
di : deadline ci : worst case execution time.

8

Task constraints

 Deadline constraint

 Resource constraints
 Shared access

 Exclusive access

 Precedence constraints
 T1 → T2: Task T2 can start executing only after T1 finishes its

execution

 Fault-tolerant requirements
 To achieve higher reliability for task execution

 Redundancy in execution

9

Computing systems 10

Uniprocessor, multiprocessor, distributed system

Notion of Predictability
 The most common denominator that is expected from a real-time

system is predictability.

 The behavior of the real-time system must be
predictable which means that with certain
assumptions about workload and failures, it should
be possible to show at design time that all the
timing constraints of the application will be met.

 For static systems, 100% guarantees can be given at design time.

 For dynamic systems, 100% guarantee cannot be given since the
characteristics of tasks are not known a priori.

 In dynamic systems, predictability means that once a task is
admitted into the system, its guarantee should never be violated
as long as the assumptions under which the task was admitted
hold.

11

Common Misconceptions

 Real-time computing is equivalent to
fast computing.

 Real-time programming is assembly
coding, priority interrupt programming,
and writing device drivers.

 Real-time systems operate in a static
environment.

 The problems in real-time system
design have been solved in other
areas of computer science and
engineering.

12

Major challenge

 The main challenge in real time
embedded system design is real
time scheduling

 Many existing scheduling
techniques

 Round robin scheduling

 Planning scheduling

 Priority scheduling

 Static scheduling

13

Preemptive vs Non-preemptive

scheduling

 Preemptive Scheduling

 Task execution is preempted and resumed later

 Preemption occurs to execute higher priority task.

 Offers higher schedulability

 Involves higher scheduling overhead due to context
switching

 Non-preemptive Scheduling

 Once a task starts executing, it completes its full
execution

 Offers lower schedulability

 Less overhead due to less context switching

14

Optimal scheduling -- definition

 A static scheduling algorithm is said to be optimal if,
for any set of tasks, it always produces a feasible
schedule (i.e., a schedule that satisfies the constraints
of the tasks) whenever any other algorithm can do so.

 A dynamic scheduling algorithm is said to be optimal
if it always produces a feasible schedule whenever a
static algorithm with complete prior knowledge of all
the possible tasks can do so.

 Static scheduling is used for scheduling periodic tasks,
whereas dynamic scheduling is used to schedule both
periodic and aperiodic tasks.

15

Summary

 Real-time embedded systems require logical
correctness and timeliness.

 Real-time embedded system consists of a controlling
system, controlled system, and the environment.

 Real-time systems are classified as: hard, firm, and
soft real time systems.

 Tasks are periodic, aperiodic, sparodic.

 The notion of predictability is important in real-time
systems and the major challenge is real time
scheduling.

16

Related Topics

1. Real Time OS (RTOS)

2. Parallel Computation

3. Multicore / Multi processor

4. Embedded System

5. Fault Tolerant

6. Distributed System

7. Network Sensor

8. Smart City

17

