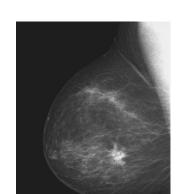
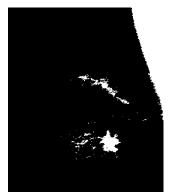
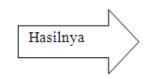

TRANSFORMASI DAN MODEL WARNA CITRA DIGITAL


COMPUTER VISION

REPRESENTASI BIT CITRA

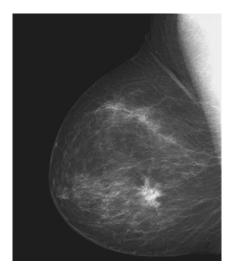
Bit	Range	Keterangan
1	0 - 1	Citra Biner
8	0 - 255	Citra abu-abu (grayscale)
12	0 - 4096	High quality grayscale
16	0 - 65535	Very high quality grayscale
32	(0.0 - 1.0)	Floating point format
8+8+8	3 x 1-255	"24 bit True Color" (monitor)

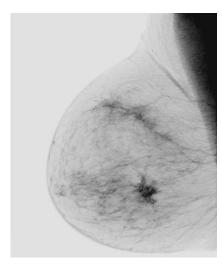



Citra abu-abu

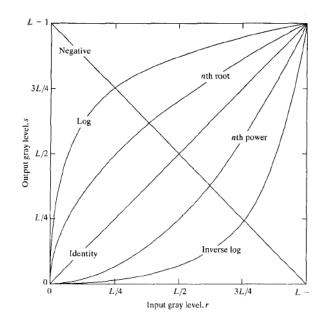
Citra biner

	7	5	4	7	2
	1	7	7	6	3
	4	0	3	7	4
	7	3	5	4	3
	5	4	5	1	4
ľ	Citr	a as	li		




0	4	2	3	4
2	3	2	6	3
-	-	- 1	_	_

Citra negatif


CITRA NEGATIF

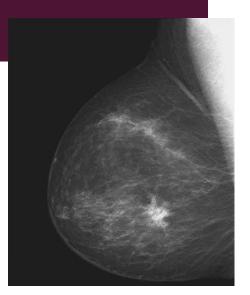
- Seperti halnya film negatif.
 - Hasil pengambilan gambar dengan kamera konvensional yang membalik citra asli.
 - Jika terdapat citra dengan jumlah gray level L dengan range [0,L-1] maka citra negatif didapat dari transformasi negatif seperti pada gambar (garis diagonal) dengan persamaan: s = L I r

Untuk L = 256, maka citra negatif didapatkan: >> j = 256 - l - f;

TRANSFORMASI LOG

- Sangat berguna dalam penggambaran grafik ketika pada deretan nilai, di samping ada selisih nilai yang sangat kecil, juga ada selisih nilai yang sangat besar,
 - Sehingga ketika digambar dalam grafik maka selisih yang kecil akan sulit untuk dilihat.
- Kurva log yang terdapat pada gambar.
- Nilai input gray level yang tinggi akan menyesuaikan dengan output gray levelnya sesuai grafik.
- Meningkatkan nilai citra yang gelap dan mengkompres nilai citra yang sangat tinggi.
- Transformasi Inverse log merupakan kebalikan dari transformasi log
- Persamaan dari transformasi log adalah: s = c log(1 + r)

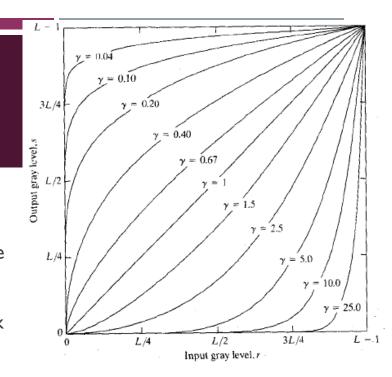
80	255	4	134	23
10	70	170	180	200
45	15	31	167	68
7	3	231	90	100
97	49	8	250	123


190	240	70	210	140
100	190	220	230	230
170	120	150	220	180
90	60	240	200	200
200	170	100	240	210

Citra asli

Citra setelah dilakukan transformasi log

Gambar 3.4 Transformasi log pada citra dengan gray level L = 256 dan c = 100


$$>> g=100*log10(1+f);$$



TRANSFORMASI POWER-LAW

- Bentuk dasar: s = cr^γ
 - c dan γ merupakan konstanta positif.
- Memetakan range sempit dari input gray level menjadi range yang lebar pada output gray level-nya.
- Mirip dengan transformasi log, tapi dengan γ transformasi power-law dapat mempunyai variasi kurva yang lebih banyak daripada tranformasi log.

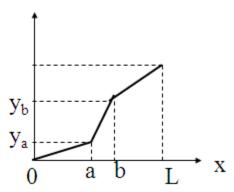


gamma = I

gamma = 0.4

gamma = 0.1

5


CONTRAST STRETCHING

- Berguna untuk meningkatkan dynamic range dari citra yang telah diproses.
- Tidak seperti transformasi sebelumnya yang memproses semua input gray level, pada contrast stretching yang diproses bisa sebagian dari input gray level sesuai dengan grafik yang digunakan

$$y = \begin{cases} \alpha x & 0 \le x < a \\ \beta(x-a) + y_a & a \le x < b \\ \gamma(x-b) + y_b & b \le x < L \end{cases}$$

$$y_b$$

$$y_a$$

>> g=f; >> g(g<50)=g(g<50)*0.2;

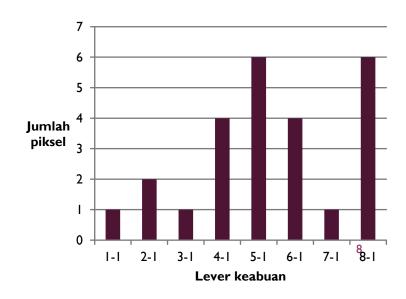
$$>> g(g>=50 \& g<150)=(g(g>=50 \& g<150)-$$

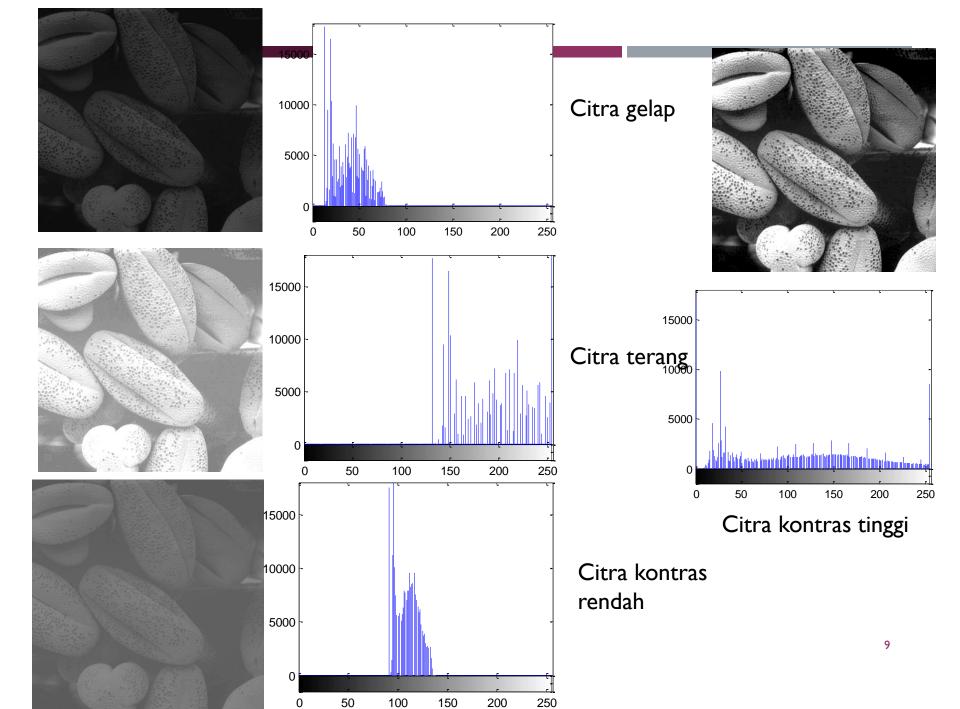
50)*2+30;

$$>> g(g>=150)=(g(g>=150)-150)*1+200;$$

$$a = 50, b = 150, \alpha = 0.2, \beta = 2, \gamma = 1, y_a = 30, y_b = 200$$

6


HISTOGRAM


- Histogram adalah dasar dari sejumlah teknik pemrosesan citra pada domain spasial, seperti perbaikan, kompresi dan segmentasi citra.
- Histogram dari suatu citra digital dengan range tingkat [0...L-1] adalah sebuah fungsi diskrit $h(r_k)=n_k$
 - r_k adalah tingkat keabuan ke-k
 - n_k adalah jumlah piksel dalam citra yang memiliki tingkat keabuan r_k.
- Normalisasi histrogram dilakukan dengan membagi setiap nilai n_k dengan total jumlah piksel dalam citra, yang dinyatakan dengan n.
 - Histogram yang sudah dinormalisasi dinyatakan dengan $p(r_k) = n_k/n$, untuk k=0,1,...,L-1.
- $p(r_k)$ menyatakan estimasi probabilitas kemunculan tingkat keabuan r_k .
- Jumlah dari semua komponen "normalized histogram" sama dengan I.

HISTOGRAM

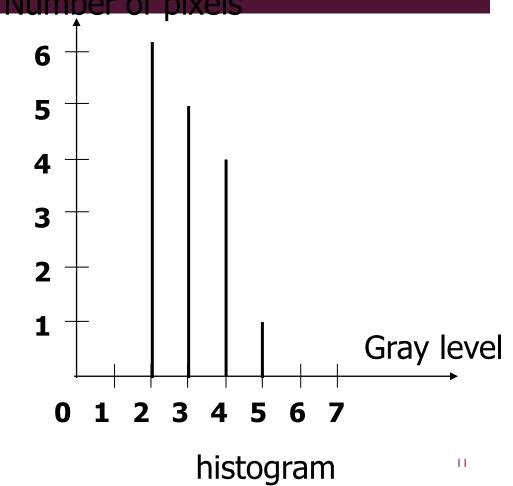
- Sumbu horisontal dari histogram menyatakan nilai tingkat keabuan r_k.
- Sumbu vertikal menyatakan nilai dari $h(r_k)=n_k$ atau $p(r_k)=n_k/n$ (jika nilainya dinormalisasi).

					gray	jum. pik	norm
7	5	4	7	2	h(0)	1	0.04
1	7	7	6	3	h(1)	2	0.08
4	0	3	7	4	h(2)	1	0.04
7	3	5	4	3	h(3)	4	0.16
5	4	5	1	4	h(4)	6	0.24
					h(5)	4	0.16
Мх	N =	25			h(6)	1	0.04
					h(7)	6	0.24
					n	25	1

HISTOGRAM NORMALIZATION

- Menskalakan nilai piksel secara linear untuk menggunakan secara penuh jangkauan yang gray-scale yang tersedia.
- Transformasi yang digunakan:

$$s_k = \frac{n_k - \min(n)}{\max(n) - \min(n)} x(L-1)$$


untuk k=0,1,2,...,L-1 disebut "histogram normalization".

CONTOH HISTOGRAM NORMALIZATION (I) Number of pixels

2	3	3	2
4	2	4	3
3	2	3	5
2	4	2	4

Input: 4x4 image

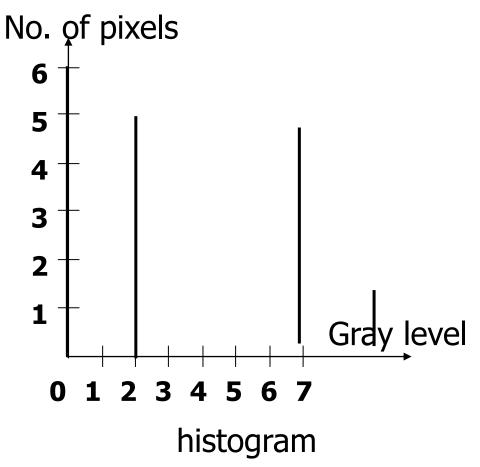
Gray scale = [0,7]

CONTOH HISTOGRAM NORMALIZATION (2)

$$s_k = \frac{n_k - \min(n)}{\max(n) - \min(n)}$$

Gray Level(j)	0	1	2	3	4	5	6	7
n _k	0	0	6	5	4	1	0	0
	-	-	0	0.33 33	0.66 67	1	-	-
s x 7	-	-	0	2.33 33 ≈2	4.66 67 ≈5	7	-	1

2	3	3	2
4	2	4	3
3	2	3	5
2	4	2	4


0	2	2	0
5	2	5	3
2	0	2	7
0	5	0	5

CONTOH HISTOGRAM NORMALIZATION (3)

0	2	2	0
5	2	5	3
2	0	2	7
0	5	0	5

Output: 4x4 image

Gray scale = [0,7]

HISTOGRAM EQUALIZATION

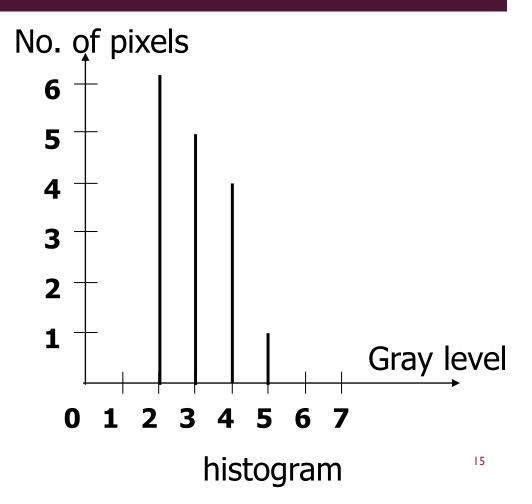
- Histogram equalization digunakan untuk memetakan kembali nilai piksel untuk membuat perkiraan linear akumulasi histogram.
- Transformasi yang digunakan:

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j)$$

$$s_k = T(r_k) = \sum_{j=0}^k \frac{n_j}{n}$$

untuk k=0,1,2,...,L-1

disebut "histogram equalization" atau "histogram linearization".

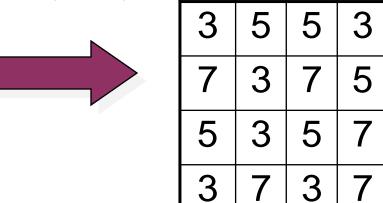

- Fungsi yang digunakan :
- $\bullet h = histeq(f, b)$
 - h merupakan citra hasil equalisasi,
 - f merupakan variabel citra dan b adalah jumlah bins yang digunakan dalam membentuk histogram. nilai default, b=64 pada citra 6 bit.

CONTOH HISTOGRAM EQUALIZATION (I)

2	3	3	2
4	2	4	3
3	2	3	5
2	4	2	4

Input: 4x4 image

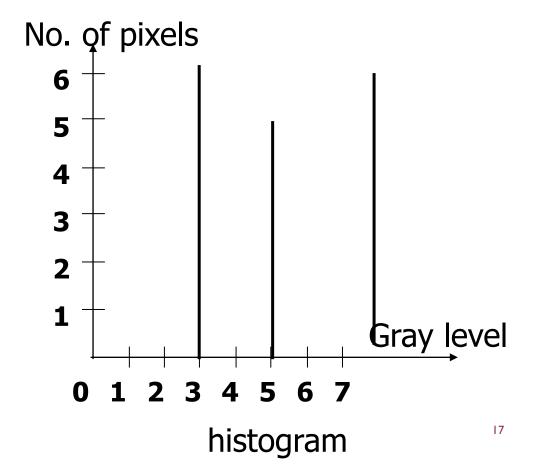
Gray scale = [0,7]



CONTOH HISTOGRAM EQUALIZATION (2)

	$\sum_{j=1}^{k}$		j
S	=	$\sum_{j=0}^{k}$	$\frac{n_j}{n}$

Gray Level(j)	0	1	2	3	4	5	6	7
n _j	0	0	6	5	4	1	0	0
	0	0	6	11	15	16	16	16
	0	0	6 / 16	11/16	15/16	16/1 6	16/1 6	16/1 6
s x 7	0	0	2.625 ≈3	4.812 5 ≈5	6.562 5 ≈7	7	7	7


2	3	3	2
4	2	4	3
3	2	3	5
2	4	2	4

CONTOH HISTOGRAM EQUALIZATION (3)

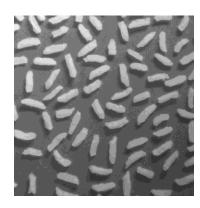
3	5	5	3
7	3	7	5
5	3	5	7
3	7	3	7

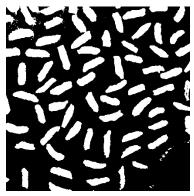

Output: 4x4 image Gray scale = [0,7]

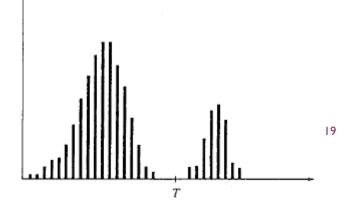
CONTOH HISTOGRAM EQUALIZATION (4)

sebelum



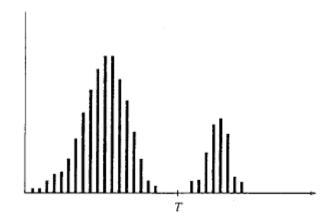






CITRA BINER

- Citra yang hanya mempunyai nilai level intensitas keabuan hitam dan putih (0 dan 1).
- Menjadi dasar dalam pengolahan citra: morfologi, segmentasi, representasi, pengenalan pola, dsb. $g(x, y) = \begin{cases} 1 & \text{jika } f(x, y) \ge T \\ 0 & \text{jika } f(x, y) < T \end{cases}$
- Formula:
- Piksel yang diberi nilai I berkaitan dengan obyek sedangkan piksel yang diberi nilai 0 berkaitan dengan background.
- Ketika T adalah konstanta, pendekatan ini disebut global thresholding.



THRESHOLDING

- Salah satu cara memilih thresholding adalah dengan pemeriksaan visual histogram citra.
- Histogram dalam gambar secara jelas mempunyai dua mode yang berbeda.
 - Mudah untuk memilih threshold T yang membaginya.
- Metode yang lain dalam pemilihan T adalah dengan trial and error, mengambil beberapa threshold berbeda sampai satu nilai T yang memberikan hasil yang baik sebagai keputusan yang ditemukan observer.

THRESHOLDING (2)

- Prosedur untuk pemilihan threshold secara otomatis:
 - I. Memilih perkiraan awal T. Disarankan perkiraan awal adalah titik tengah antara nilai intensitas minimum dan maksimum dalam citra.
 - 2. Mensegmentasi citra menggunakan T. Ini akan menghasilkan dua kelompok piksel: G_1 , yang berisi semua piksel dengan nilai intensitas \geq T, dan G_2 , yang berisi semua piksel dengan nilai intensitas \leq T.
 - 3. Menghitung rata-rata nilai intensitas μ_1 dan μ_2 untuk piksel-piksel dalam region G_1 dan G_2 .
 - 4. Menghitung nilai threshold yang baru:

$$T = \frac{1}{2} \left(\mu_{\scriptscriptstyle 1} + \mu_{\scriptscriptstyle 2} \right)$$

5. Mengulangi langkah 2 sampai 4 sampai perbedaan T dalam iterasi yang berturut-turut lebih kecil daripada parameter T_o sebelumnya.

FORMULASI OTSU

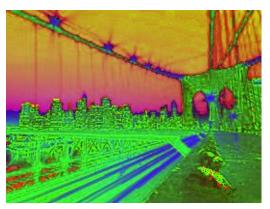
Normalisasi histogram sebagai fungsi probability discrete density, sebagai:

$$p_r(r_q) = \frac{n_q}{n}$$
 $q = 0, 1, 2, ..., L-1$

- di mana n adalah total jumlah piksel dalam citra, n_q adalah jumlah piksel yang dipunyai level intensitas r_q , dan L adalah total jumlah level intensitas yang tersedia dalam citra.
- Andaikan bahwa threshold k dipilih maka C_0 adalah sekumpulan piksel dengan level [0, 1, ..., k-1] dan C_1 adalah sekumpulan piksel dengan level [k, k+1, ..., k-1].
- Metode Otsu memilih nilai k yang memaksimalkan between-class variance σ_B^2 , yang didefinisikan sebagai:

$$\sigma_{B}^{2} = \omega_{0} (\mu_{0} - \mu_{T})^{2} + \omega_{1} (\mu_{1} - \mu_{T})^{2}$$

$$\omega_{0} = \sum_{q=0}^{k-1} p_{q} (r_{q}) \qquad \mu_{0} = \sum_{q=0}^{k-1} q p_{q} (r_{q}) / \omega_{0}$$


$$\omega_{1} = \sum_{q=k}^{L-1} p_{q} (r_{q}) \qquad \mu_{1} = \sum_{q=k}^{L-1} q p_{q} (r_{q}) / \omega_{1}$$

$$\mu_{T} = \sum_{q=0}^{L-1} q p_{q} (r_{q})$$

MODEL WARNA HSI

Citra RGB

Citra HSI

Citra Hue

Citra Saturation

Citra Intensity/Gray

KONVERSI WARNA RGB KE HSI

$$H = \begin{cases} \theta & \text{Jika B} \le G \\ 360 & \text{Jika B} > G \end{cases}$$

$$\theta = \cos^{-1} \left\{ \frac{\frac{1}{2} [(R - G) + (R - B)]}{[(R - G)^2 + (R - B)(G - B))]^{1/2}} \right\}$$

Intensity / Gray

$$I = \frac{1}{3}(R + G + B)$$

Saturation

$$S = 1 - \frac{3}{(R+G+B)}[\min(R,G,B)]$$

KONVERSI WARNA HSI KE RGEktor GB (120° ≤ H < 240°)

interval [0,1] maka dapat dicari nilai RGB dalam range yang sama.

- Persamaan yang aplikatif tergantung pada nilai H.
- Ada tiga sektor yang menarik, yang berhubungan dengan interval 120° dalam pembagian warna primer.
 - Dimulai dengan perkalian H dengan 360°, yang mengembalikan hue ke nilai aslinya dalam range [0°,360°]

Sektor RG ($0^{\circ} \le H < 120^{\circ}$)

$$B = I(I - S)$$

$$R = I \left[1 + \frac{S \cos H}{\cos(60^{\circ} - H)} \right]$$

$$G = 3I - (R + B)$$

$$H = H - 120^{\circ}$$

Kemudian komponen RGB dihitung:

$$R = I(I - S)$$

$$G = I \left[1 + \frac{S \cos H}{\cos(60^\circ - H)} \right]$$

$$B = 3I - (R + G)$$

Sektor BR
$$(240^{\circ} \le H \le 360^{\circ})$$

$$H = H - 240^{\circ}$$

Komponen RGB dihitung dengan:

$$G = I(I - S)$$

$$B = I \left[1 + \frac{S \cos H}{\cos(60^\circ - H)} \right]$$

$$R = 3I - (G + B)$$