388

6.26. Provide an intui

6.27.

6.28.

6.29.

6.30.

pISTRIBUTIONS

1Ty
SELECTING INPUT PROBABIL

s nition of MLES in the continug

(ive motivation zo(fa')h;l‘:zﬂgh (c) below. As before, the Ob‘;z r‘;ase(o

Sec. 6.5) by going mar:uitrle st&g ealizations of a random variable X with de:gl

aBI:: :nfximd t.l;af’tll'le X;'s have already been observed, 50 are to be regardeq 4 ﬁyxez

jables.

@) bers e B8 sl poitive)real number 46 SCTRIE B hase ey
a value of X near X;” to be the event {X; — & < X< X,f+, ez. Use the mean-yy),
theorem from calculus to argue that P(getting a value of X'near X)) = ¢,y 5
anyi=1,2....m O alies o X

(b) Define the phrase “getting a sample of n 11D values of X near the observeg gy,
to be the event (getting @ value of X near X; ...gellmg avalue of X nearX, . e
ting a value of X near X,). Show that P(getting a sample of n IID values of x nea;
the observed data) = (&) fyX)fX2) ** fy(X,), and note that this is prgp,,.
tional to the likelihood function L(0). ke

(c) Argue that the MLE @ is the value of 6 that maximizes the approximate probabil.
ity of getting a sample of n IID values of X near the observed data, and ip thi
sense “best explains” the data that were actually observed.

Why is the average delay in queue approximately equal to the corresponding average
number in queue in Table 6.27

Show that Eq. (6.17) in Sec. 6.11 is correct.

Develop the general recursive formula for Newton’s method to estimate the shape
parameter a for the Weibull distribution in Sec. 6.11 [see Eq. (6.22)]. The formula
should be of the following form:

f@)

Gy = @ — f,(&k)

where ' denotes the derivative of f.

In the ellbsefnce of_ data (Sec. 6.11), show how to specify a triangular distribution based
on subjective estimates of a, m, and X,

dala

I
gandom-Number Generators

(Jif;;:qrmlpcndediecitigﬂs for a first reading: 7.1,7.2,7.3.1,7.3.2,7.4.1, 743

7.1
INTRODUCTION

A simulation of any system or process in which there are inherently random com-
ponents requires a method of generating or obtaining numbers that are random, in
he queueing and inventory models of Chaps. 1 and 2
required interarrival times, service times, demand sizes, etc., that were “drawn”
from some specified distribution, such as exponential or Erlang. In this and the next
chapter, we discuss how random values can be conveniently and efficiently gener-
ated from a desired probability distribution for use in executing simulation models.
So as to avoid speaking of “generating random variables,” which would not be
strictly correct since a random variable is defined in mathematical probability the-

ory as a function satisfying certain conditions, we wi
nology and speak of “generating random variates.”
This entire chapter is devoted to methods of generating random variates from
the uniform distribution on the interval [0, 11; this distribution was denoted by
U0, 1) in Chap. 6. Random variates generated from the U(0, 1) distribution will be
called random numbers. Although this is the simplest continuous distribution of all,
itis extremely important that we be able to obtain such independent random num-
bers. This prominent role of the U(0, 1) distribution stems from the fact that random

Variates from all other distributions (normal, gamma, binon}ial. etc.) and realiza-
tions of various random processes (€8 2 nonstationary Poisson process) can be
obtained by transforming IID random numbers in a Way detferr_runed by the desired
distribution or process. This chapter discusses ways to obtain independent random

some sense. For example, t

11 adopt more precise termi-

389

RS
390 RANDOM-NUMBER GENERATO

f transforming the

- ter treats methOdS 0) m to Obta:

numbers, and the fol!owg’fﬁf;’;p :nd realizations of various pr0cess§s. b"'“ﬂ

arages fm?i, 0;?,?:;;'53; generat}ng random numbers;l]assaﬁl)ogg gfgi mter_esting i
The metho o Dobell (1962), Morgan (1984, pp. 21—), an ydew.cz (1975)

tory; see Hull an liest methods were essentially carried oy by hang

ining accounts. The ear ST :
:Si:;':: Icg;nstingg lots (Matthew 27 : 35), throwing dice, dealing out cards, oy caig

i 2 lotteries are still operaeq ;. . &
swell-stirred urn.” Many : ed ip g
:,:Tb:;eig zillllskf;g&aby American males who were of draft age in the late 1§

1960y
and early 1970s. In the early twentieth century, statisticians joined gamblers thei;
interest in random numbers, and mec

hanized devices were built to generate randg
numbers more quickly; in the late 1930s, Kendall ggd nglng(;_on‘fnsmh (1938) useg
a rapidly spinning disk to prepare a table qf 100,000 random 'lg-l S. Some time later
electric circuits based on randomly pulsating vacuum tubes were developed thy de-
livered random digits at rates of up to 50 per second. Qne such random-numpe, ma-
chine, the Electronic Random Number Indicator Equipment (ERNIE), was ygeq B
the British General Post Office to pick the winners in the Premium Savings Bong
lottery [see Thomson (1959)]. Another electronic device was used by the Rand Cgy.
poration (1955) to generate a table of a million random digits. Many other schemeg
have been contrived, such as picking numbers “randomly” out of phone books or
census reports, or using digits in an expansion of 7 to 100,000 decimal places,
There has been more recent interest in building and testing physical random-
number “machines”; for example, Miyatake et al. (1983) describe a device baseq on
counting gamma rays.

As computers (and simulation) became more widely used, increasing attention
was paid to methods of random-number generation compatible with the way com-
puters work. One possibility would be to hook up an electronic random-number ma-
chine, such as ERNIE, directly to the computer. This has several disadvantages,
chiefly that we could not reproduce a previously generated random-number stream
exactly. (The desirability of being able to do this is discussed later in this section.)
Another alternative would be to read in a table, such as the Rand Corporation table,
but this would entail either large memory requirements or a lot of time for relatively
slow input operations. (Also, it is not at all uncommon for a modern large-scale sim-
ulation to use far more than a million random numbers, each of which would require
several individual random digits.) Therefore, research in the 1940s and 1950s
turned to numerical or arithmetic ways to generate “random” numbers. These meth-
ods are sequential, with each new number being determined by one or several of its
predecessors according to a fixed mathematical formula. The first such arithmetic

generator, proposed by von Neumann and Metropolis in the 1940s, is the famous
midsquare method, an example of which follows.

EXAMPLE 7.1. Start with a four-dj

_ ‘ . _ git positive integer Z, and square it to obtain an
integer with up to eight digits; if nec :

essary, append zeros to the left to make it exactly
its of this eight-digit number as the next four-digit
L the left of Z, to obtain the first “U(0, 1) random
dle four digits of Z? and let U/, be Z, with a decimé]
lvlisls the first few Z’s and U,'s for Z, = 7182 (the
cimal point in the number e).

point at the left, and so on, Table .
first four digits to the right of the de.

Y

" CHAPTER SEVEN 391
TABLE 7.1
The midsquare method
i Z Ui Z
(l) 7182 — 51,581,124
5811 0.5811 33,767,721
2 7677 0.7677 58,936,329
3 9363 0.9363 87,665,769
4 6657 0.6657 44315649
5 3156 0.3156

09,960,336

[ntuitively the midsquare method seems to provide a good scrambling of one
pumber to obtain the next, and so we might think that such a haphazard rule would
rovide a fairly good way of generating random numbers. In fact, it does not work
very well at all. One serious problem (among o;hers) is that it has a strong tendency
{0 degenerate fairly rapidly to zero, where it will stay foreygr. (Continue Table 7.1
for just a few more steps, or try Z, = 10093 the ﬁrst‘ four digits from the Rand Cor-
poration tables.) This illustrates the dmger in assuming that a good randqm-number
senerator will always be obtained by doing something strange and nefarious to one
;umber to obtain the next. : . > : h
A more fundamental objection to the midsquare method is that it is not “random
at all, in the sense of being unpredictable. Indeeq, 4if we know one number, t.he next
is completely determined since the rule to obtain it is fixed; :victua‘lly,‘when Zo 1S Speacli
ified, the whole sequence of Z;'s and U;'s is determined. This objection applies to ;
arithmetic generators (the only kind we consider in‘ the rest Of, this chapter), ::1
arguing about it usually leads one quickly ipto myspcal d.lSCUSSlOl"lS about theall g
nature of truly random numbers. (Sometimes arithmetic generators are calle
pseudorandom, an awkward term that we avoid, even though it is probably ntlt:)rc?
accurate.) Indeed, in an oft-quoted quip, John von Neumann (1951) declared that:

Any one who considers arithmetical methods of producing randon_) digits is, o}fj course,
in a state of sin. For, as has been pointed out several times, there 1S no such t ng z?su:
random number—there are only methods to produce random number: :;rlxi a S:,—llf}i z;lcre
metic procedure of course is not such a method. . . . We are here de: ling

“cooking recipes” for making digits. . . .

i same paragraph to
It is seldom stated, however, that von Neumann goes on in the same paragrap!

say, less gloomily, that these “recipes” |
hould merely be judged by their results.
d by a given recipe should be made, but
tk well on one problem, they seem usu-

... probably . . . can not be justified, but s
Some statistical study of the digits geqell‘ate
exhaustive tests are impraclical. If the digits WO!
ally to be successful with others of the same type-

ared by Lehmer (1951), who developed

moreaprhctCERE N 3 d class of techniques for random-number

What is probably still the most widely use

392 RANDOM-NUMBER GENERATORS

tion (discussed in Sec- 7.2); he viewed the idea of an arithmetj, Tandop,
generation .

number generator as . '
avague notion embodying the idea of a sequence in which each term jg unpre diClab|e

R ioi s a certain number of tests traditiona] yjg, .,
Yo unimualeddjand whos‘::;tg glsl L:ha: use to which the sequence is to be put th Statigy;,
cians and depending some g

More formal definitions of “randomness” in an a)[qor.na:](-: Seénse are ¢
Ripley (1987, p. 19); Niederreiter (1978) argues that statistical randomnegg May ng,
even be desirable, and that other properties of the generated numbers, Such g
“evenness” of the distribution of points, are more 1mp0r.tant n some aPPIiCa[iom
such as Monte Carlo integration. We agree with most writers that arithmetjc gene}f
ators, if designed carefully, can produce numbers that D pear; to be i“dependem
draws from the U(0, 1) distribution, in that they pass a series of stfmstical (ests (gee
Sec. 7.4). This is a useful definition of “random numbers,” to which we subscribe

A “good” arithmetic random-number generator should possess severg] Pl'Op-.
erties:

iteq b

1. Above all, the numbers produced should appear to be distributed unifomﬂy on
[0, 1] and should not exhibit any correlation with each other; otherwise, the sjy.
ulation’s results may be completely invalid.

2. From a practical standpoint, we would naturally like the generator to be fast ang
avoid the need for a lot of storage.

3. We would like to be able to reproduce a given stream of random numbers ex-
actly, for at least two reasons. First, this can sometimes make debugging or ver-
ification of the computer program easier. More important, we might want to use
identical random numbers in simulating different systems in order to obtain a
more precise comparison; Sec. 11.2 discusses this in detail.

4. There should be provision in the generator for easily producing separate “streams”
of random numbers. As we shall see, a stream is simply a subsegment of the num-
bers produced by the generator, with one stream beginning where the previous
stream ends. We can think of the different streams as bein g separate and indepen-
dent generators (provided that we do not use up a whole stream, whose length is
typicaﬂy chosen to be a very large number). Thus, the user can “dedicate” a par-
ticular stream to a particular source of randomness in the simulation. We did this,
for example, in the single-server queueing model of Sec. 2.4, where stream 1 was
used for generating interarrival times and stream 2 for generating service times.
Usmg Separate streams for separate purposes facilitates reproducibility and com-
Pafabl]lf}’_qf S_lmulation results. While this idea has obvious intuitive appeal, there
Ruer g o g O 5 Vel 5 dscusd i S 112

R o o diseussed in other parte
eparate streams for a generator is facilitated 1

there is an efficient way to i : ot
Jump from + Jth
random number for large valyes gf k. o it o, the

We would like the generator to by i of
i e € portable, i.e., to produce the same sequence

computers (see Sec. 7.2.2).IJ R tine accuracy) for all standard compilers and

w

CHAPTER SEVEN 393

ally those generators in. i
; B g cluded in modern
gimulation packages, satisfying point 4. Unfortuﬂately, there are also many genera-

at fail to Satllsfy the umfprmity and independence criteria of point 1 above,
which are absolutely necessary if one hopes to obtain correct simulation results, The
Jpundance of such statistically unacceptable generators s illustrated by the very
iitle of the paper by Sawitzki (1985). Park and Miller (1988) and L’Ecuyer (2001)
eport several instances of published generators’ displaying very poor performance,
including one that can even repeat the same “random” number forever.

In Sec. 7.2 we dl.SCUSS the most common kind of generator, while Sec. 7.3 dis-
cusses some alternative methods. Section 7.4 discusses how one can test a given
random-number generator for the desired statistical properties. Finally, Apps. 7A
and 7B contain portable computer code for two random-number generators in C.
The first generator was used for the examples in Chaps. 1 and 2. The second gener-
ator is known to have better statistical properties and is recommended for real-
world applications.

The subject of random-number generation is a complicated one, involving such
disparate disciplines as abstract algebra and number theory, on one hand, and sys-
tems programming and computer hardware engineering, on the other. General ref-
erences on random-number generators are the books by Fishman (1996, 2001,
2006), Gentle (2003), Knuth (1998a), and Tezuka (1995) and, in addition, the book
chapters by L'Ecuyer (1998, 2004, 2006).

7.2
LINEAR CONGRUENTIAL GENERATORS

Many random-number generators in use today are linear congruential generators
(LCGs), introduced by Lehmer (1951). A sequence of integers Z,, Z,, . . . 1S defined
by the recursive formula

Z = (aZ,_, + c)(mod m) (7.1)

where m (the modulus), a (the multiplier), ¢ (the increment), and Z,, (the seed or start-

ing value) are nonnegative integers. Thus, qu (7.1) says fhﬂl Fo'o'bmnTZl;e:::l;olfee
aZ_,+ ¢ by m and let Z be the remainder of this dlvxs_lo_n.1 o)
0=Z = m — 1, and to obtain the desired random numbgrs U, (fori = [, mon :;,2
[0, 17, we let U, = Z,/m. We shall concentrate our attenuorrll folrdllll)z ma(;(si ;Sten[ion =
Z's, although the precise nature of the division of Z, by ms 10; handfe Hota
due to differences in the way various computers and compile i1 7, shiballe]
arithmetic. In addition to nonnegativity, the integers m d ¢

0<m,a<mec<mandZ, <m e

i : : ; i t objection

Immedis bi ctions could be raised against LCGs. The first obj i
mediately, two obje et generators, namely, that the Z;’s

’ numb
'S one co to all (pseudo) random-num anpe
defined b];/m;i(zln ((')/'.E]i) z(il;e not really random at all. In fact, one ¢ y

394 RANDOM-NUMBER GENERATORS

mathematical induction that for i = 1,2, .- -
PR c et i 7
Z,-=[a'zo+ Giax] (m)
: ined by m, a, ¢, and Z;. Howevyer b
Z is completely determined TRGH ; » BY cara
‘s:goti!;:t :;fhzse'fom parameters we try to induce behavior in the Z;s thag p, o fu]
corresponding U's appear to be 1ID U(0, 1) random variates when subjecye, o
variety of tests (see Sec. 7.4). ; i
anThtye second objection to LCGs might be‘ that the U,‘s can take op only g
rational values 0, 1/m, 2/m, . . ., (m — 1)/m; in fact, the U’s might actually take
only a fraction of these values, depending on the specification of the constap m,
¢, and Z,, as well as on the nature of the floating-point division by m. Thyg there i
no possibility of getting a value of U, between, say, 0.1/m and 0.9/m, wherey this
should occur with probability 0.8/m > 0. As we shall see, the modulus p i usually
chosen to be very large, say 10° or more, so that the pomnts in [0, 1] where the U
can fall are very dense; for m = 107, there are at least a billion possible valyes

EXAMPLE 7.2. Consider the LCG defined by m = 16, a = 5, ¢ = 3, and 7, < 4
Table 7.2 gives Z, and U, (to three decimal places) for i = 1,2, ..., 19. Note thy 7
Z,=6,Z,=2 =1, and so on. That is, from i = 17 through 32, we shall obtaj,
exactly the same values of Z, (and hence U,) that we did from ; = | through 16, ang in
exactly the same order. (We do not seriously suggest that anyone use this generator since
m is so small; it only illustrates the arithmetic of LCGs.)

The “looping™ behavior of the LCG in Example 7.2 is inevitable. By the defi-
nition in Eq. (7.1), whenever Z, takes on a value it has had previously, exactly the
same sequence of values is generated, and this cycle repeats itself endlessly. The
length of a cycle is called the period of a generator. For LCGs, Z, depends only on
the previous integer Z_,,andsince 0 = Z < m — 1, it is clear that the period is at
most /m; if it is in fact m, the LCG is said to have full period. (The LCG in Example 7.2
has full period.) Clearly, if a generator is full-period, any choice of the initial seed
Zyfrom{0, 1, m — 1} will produce the entire cycle in some order. If, however,
a generator has less than full period, the cycle length could in fact depend on the

particular value of Z, chosen, in which case we should really refer to the period of
the seed for this generator.

Since large-scale simulation projects can use millions of random numbers, it is
manifestly desirable to have LCGs with long periods. Furthermore, it is comforting

TABLE 7.2

The LCG Z; = (5Z,_, + 3)(mod16) with Zy=17

L e —— e Sum— Sas S T
i Z, U
15 4 0.250
16 7 0.438
17 6 0375
8 1 0063
19 8 0500

[E77n g o L

CHAPTER SEVEN 395

have fgll-penogx[;glt?s. sinqe We are assured that every integer between 0 and
~ 1 will ‘L’f?"r(Ev o f"ga[fh cyele, which should contribute to the unifor-

.+ of the U;'s. : -Period LCGs, how R 2 ;
mm'(n segments within a cycle, For e €ver, can exhibit nonuniform behay

ord - e, if we generate only m/2 consecutive
17?.‘5. they may leave large gaps in the Sequence 0, 1,.., _yl o/f possible val-

Jes.) Thus, it 1S useful to know how to chogse ™. a, and ¢ so that the corresponding
1.CG will have full period. The following thegrem, proved by Hull and Dobell
(1962). gives such a characterization,

{o

THEOREM 7.1. The LCG defined in Eq (7.1) has full period if and only if the fol-
lowing three Condl-tlons hold:
(a) The only positive integer that (exactly) divides both m and cis 1.

(b) If g is a prime number (divisible by only itself and 1) that divides m, then g divides
a—1.
(c) 1f 4 divides m, then 4 divides g — 1.

(Condition (@) in Theorem 7.1 is often stated as *
Obtaining a full (or at least a long) period i

good LCG:; as indicated in Sec. 7.1, we also wal
as apparent independence)

c is relatively prime to m.”]

s just one desirable property for a
nt good statistical properties (such
, computational and storage efficiency, reproducibility,
facilities for separate streams, and portability (see Sec. 7.2.2). Reproducibility is
simple, for we must only remember the initial seed used, Z;, and initiate the gener-
ator with this value again to obtain the same sequence of U's exactly. Also, we can
easily resume generating the Z's at any point in the sequence by saving the final Z,
obtained previously and using it as the new seed; this is a common way to obtain
nonoverlapping, “independent” sequences of random numbers.

Streams are typically set up in a LCG by simply specifying the initial seed for
each stream. For example, if we want streams of length 1,000,000 each, we set Z,
for the first stream to some value, then use Z, ;) 0 as the seed for the second
stream, Z, ., o0 @ the seed for the third stream, and so on. Thus, we see that streams
are actunliy nonoverlapping adjacent subsequences of the single sequence of ran-
dom numbers being generated; if we were to use more than 1,000,000 random num-
bers from one stream in the above example, we would be encroaching on the be-
ginning of the next stream, which might already have been used for something else,
resulting in unwanted correlation.

In the remainder of this section we consider the choice of parameters for ob-
taining good .CGs and identify some poor LCGs that are still in use. Because of
condition (@) in Theorem 7.1, LCGs tend to behave differently for ¢ > 0 (called
mixed LCGs) than for ¢ = 0 (called multiplicative LCGs).

7.2.1 Mixed Generators

For ¢ > 0, condition (a) in Theorem 7.1 is possible, so we might pe able to 0\3[am
full period m, as we now discuss. For a large period and high density of t]?e Ulr Sﬁo:;
(0,11, we want m to be large. Furthermore, in Fhe early days of c_on:guter Sl:jl:dtr(;n
when computers were relatively slow, dividing py m to ‘obtamde ;r;irlr; intenyy
Eq. (7.1) was a relatively slow arithmetic operation, and it was

s
396 RANDOM-NUMBER GENERATOR

ot ice of m that is good in all theg,

having to do this di»{ision exphcnl)’-f Ab:sh (();nary digirs) in a word on the i;espects

is m = 2", where b is the number © For example, 1 Putey

ism = 2", ailable for actual data StOrage. = mple, most ¢ ey
being used that ar¢ a;z-bit words, the leftmost bit bemgh a sign bit, so p < 5 ans
and co;:llpxlelsl h:YlTjon Furthermore, choosing m = 2 does allgw us to avoig
i '>'Z'on l;y m on most computers by tak},ng advantage of integer oy,
g dl?::ne er that can be represented is 2° = 1, and any attempy ¢ Store
The la.rgtes 3 w%with say, h > bbits) will result m.loss of thg left (most signiﬁcam.)
}xufe;?i;gof this oversized integer. What remains in the retained b bits js Precise

b

W(mv(gﬁf t};e choice of m = 2°, Theorem 7.1 says that we shall obtgin a ful] Periog
if c is odd and @ — 1 is divisible by 4. Furthem_lore, Z, can be any integer betweep
Oandm — 1 without affecting the period. We will, however, focus on mulliplicative
LCGs in the remainder of Sec. 7.2, because they are much more widely ugeq.

7.2.2 Multiplicative Generators

Multiplicative LCGs are advantageous in that the addition of ¢ is not needed, by
they cannot have full period since condition (a) of Theorem 7.1 cannot be satisfieg
(because, for example, m is positive and divides both m and ¢ = 0). As we shall see,
however, it is possible to obtain period m — 1 if m and a are chosen carefully.

As with mixed generators, it’s still computationally efficient to choose m = b
and thus avoid explicit division. However, it can be shown [see, for example,
Knuth (1998a, p. 20)] that in this case the period is at most 2”7, that is, only one-
Jourth of the integers 0 through m — 1 can be obtained as values for the Z's. (In
fact, the period is 2°* if Z; is odd and a is of the form 8k + 3 or 8% + 5 for some
k=0,1,....) Furthermore, we generally shall not know where these m/4 inte-

gers will fall; i.e., there might be unacceptably large gaps in the Z s obtained. Ad-
ditionally, if we choose a to be of the form 2 +

by a is replaced by a shift and J adds)
The generator usually known as RAN
65,539, ¢ = 0) and has been
(see Sec. 7.4). Even if one

J (so that the multiplication of Z,_,
» Poor statistical properties can be induced.
DU is of this form (m = 2%, g = 2'°+ 3 =
shown to have very undesirable statistical properties

licati : does not choose a = 2' + j, using m = 2° in multi-
plicative LCGs is probably not a good idea, if only because of the shorter period of
m/4 and the resulting possibility of gaps.
Because of th

1 difﬁcu][ies associated with choosing m = 2 in multiplicative
c;vtas t:)aud to finding other ways of specifying m. Such a method,
0 be quite successful, was reported by Hutchinson (1966), who

LCGs, attention
which has prove
attributed the id

¢a to Lehmer. Instead of Jey; b s
i : ng m = 27 it wa osed that m be
:he la.rges_t prime qumbcr that is less than 20 e S th prop gl
argest prime that is less than 2% 5 v, Pl€, In the case of b ,

for m prime, it oY agreeably, 2*1 — | = 2 147,483,647. Now
modulg m;ih;t f:n tlt:: :2,(3‘{" lh.at the period is p — Lif a is a primitive elemen!
m = 1; see Knuth’(19986 pe;to;n;;g-er Lfor which o' — 1 is divisible by mis ! =
integer 1, 2, . . 2o 20 Withm and g chogen in this way, we obtain each

-»m = 1 exac :
tly once in each cycle, so that Z, can be any integer

CHAPTER SEVEN 397

roughm — 1 and aperiod of m — 1 wilt e i

rogl}xi?muﬁiplicative LCGs (PMMLCGS)? B
mo Two issues immediately arise concernin
o primitive element modulo m? Althg
e characterizations, the task is quite co
>, | We shall, in essence, fines
pm?viLCGS' (2) Since we are n
l::il overflow mechanism dire

g PMMLCGs: (1) How does one ob-
ugh Knuth (1998a, pp. 20-21) gives
. mplicated from a computational stand-
se this point by discussing below two widely used
ot choosing m = 2, we can no longer use the inte-

echanism:d Ct}y to effect division modulo m. A technique for
;Voiding explicit division in this case, which also uses a type of overflow, was

given by Payne, Rabung, and Bogyo (1969) and has been called simulated

Jivision. Marse and Roberts’ portable generator, which we discuss below, uses
. lated division.
simulate

{ain

Considerable work has been directed toward identifying good multipliers a for
pMMLCGs that are primitive elements modulo m* = 2°' — 1, which result in a pe-

rod of m* — L. In an important set of papers, Fishman and Moore (1982, 1986)
evaluated all multipliers a that are primitive elements modulo m*, numbering some
534 million. They used both empirical and theoretical tests (see Sec. 7.4 below), :.md
they identified several multipliers that perform well according to a number of fairly
stringent criteria.

Two particular values of a that have been widely used for the modulus m* are
a, =7 = 16,807 and a, = 630,360,016, both of which are primitive elements
modulo m*. [However, neither value of a was found by Fishman and Moore to be
among the best (see Sec. 7.4.2).] The multiplier a, was originally suggested by
Lewis, Goodman, and Miller (1969), and it was used by Schrage (1979) in a clever
FORTRAN implementation using simulated division. The importance of Schrage’s
code was that it provided at that time a reasonably good and portable random-
number generator.

The multiplier a,, suggested originally by Payne, Rabung, and Bogyo (1969),
was found by Fishman and Moore to yield statistical performance better than
does a, (see Sec. 7.4.2). Marse and Roberts (1983) provided a highly pgrtab?e
FORTRAN routine for this multiplier, and a C version of this geperator is given in
App. TA. This is the generator that we used for all the examples in Chaps. 1 and 2,
and it is the one built into the simlib package in Chap. 2.

The PMMLCG with m = m* = 2*' — landa = a, = 630,36Q.016 may pro-
vide acceptable results for some applications, particularly if the required nu,mber of
random numbers is not too large. However, many experts [see, e.g., L'Ecuyer,
Simard, Chen, and Kelton (2002) and Gentle (2003, p. 21)] recommend that LCGs
with a modulus of around 2°! should no longer be used as_the random-nqmb;:rt.gen)-
Not only can the period of the generator be exha a :
CO“‘PUIZFS, but, mlz)re importantlay. the relatively poor statistical pZOPC";?Sr?;;:?;:
generators can bias simulation results for sample sizes that ar;, E’;& I;n;gu: e

M i ¥ and multl 1 :

o e T g s
U(0, 1) distribution if the number of observations in the samp pp

3908 RANDOM-NUMBER GENERATORS

8 times the cube root of the period of the gencrator. Thus, the “safe” periog o thege

generators is actually approximately 10,000 [see also L'Ecuyer et al. (2000)),

If a random-number generator with a larger pe.nod and better statisticg] Prope
ties is desired, then the combined multiple recursive generator of L'Ecuyer o thn
Mersenne twister (see Secs. 7.3.2 and 7.3.3, respectively) should be considere d e

7.3
OTHER KINDS OF GENERATORS

Although LCGs are probably the most widely used and best understood king of
random-number generator, there are many alternative types. (We have already seey
one alternative in Sec. 7.1, the midsquare method, which is not recommended,)
Most of these other generators have been developed in an attempt to obtain longer
periods and better statistical properties. Our treatment in this section is meant not o
be an exhaustive compendium of all kinds of generators, but only to indicate some
of the main alternatives to LCGs.

7.3.1 More General Congruences

LCGs can be thought of as a special case of generators defined by
Z =gZ_,Z_,, ...)mod m) (7.2)

where g is a fixed deterministic function of previous Z’s. As with LCGs, the Z’s de-
ﬁ}led by Eq. (7.2) lie between 0 and m — 1, and the U(0, 1) random numbelrs are
given by U; = Z,/m. [For LCGs, the function g is, of course, PV O s o)) =
aZ_, + c.] Here we briefly discuss a few of these kinds of genémlor:q and refer
the reader to Knuth (1998a, pp. 26-36) or L’Ecuyer (2004) for a more detailed
discussion.

; _,One obvious generalization of LCGs would be to let UAR S A o) =
a'Z_, +aZ_, + ¢, which produces a quadratic congmenliz{l aelnefai(')rf A special
case that has received some attention is when a' = q — l,c= b and m is a power
of 2; although this particular generator turns out to be a close relative of the mid-
square method (see Sec. 7.1), it has better statistical properties. Since Z; still de-
pends only on Z,_, (and not on earlier Z’s),andsince 0 = Z = m — 1 tf)c pﬂﬁOd

_ of quadratic congruential generators is ajt most m, as for leC; 1 :
A different choice of the function : i

e T ; € 18 to maintain i - earlier
Z's; this gives rise to ntain linearity but to use

by generators called multiple recursive generators (MRGS) and
82-0Zia) =aZ ‘a7z +.. 4.z 73
where a,, a,, ..., a, are constants, A e

L’Ecuyer, Bloui properly [see Knuth (1998a, pp. 29-30)
e a).’l izatio?‘ug;. :;‘I‘l:d Couture (1993) Investigated such genelfators anI():lpinclude‘i a
spectral test (see Sec. 7.4.2) for their evalu;ition; they als®

CHAPTER SEVEN 399

identified several specific generators of this type that perform well, and give
able implementations. Additional attention to generators with g of ;he form in

.(7-3) .used in‘ Eq. (7.2) has focused on g's defined as Z_, + Z,_,, which includes
he old Fibonacci generator q

porl

Z,=(Z_, + Z_,)(mod m)

This generator tends to hqve a period in excess of m but is completely unacceptable
from a statistical standpoint; see Prob. 7.12.

A generalization of LCGs along a different line was proposed by Haas (1987),
who suggested that in the basic LCG of Eq. (7.1) we change both the multiplier a and
the increment ¢ according to congruential formulas before generating each new Z.
sratistical tests of this type of generator (see Sec. 7.4.1) appeared favorable, and his
analysis indicated that we can readily obtain very large periods, such as 800 trillion
in one example.

7.3.2 Composite Generators

Several researchers have developed methods that take two or more separate gener-
ators and combine them in some way to generate the final random numbers. It is
hoped that this composite generator will exhibit a longer period and better statisti-
cal behavior than any of the simple generators composing it. The disadvantage in
using a composite generator is, of course, that the cost of obtaining each U, is more
than that of using one of the simple generators alone.

Perhaps the earliest kind of composite generators used a second LCG to shuffle
the output from the first LCG; they were developed by MacLaren and Marsaglia
(1965) and extended by Marsaglia and Bray (1968), Grosenbaugh (1969). and
Nance and Overstreet (1975). Initially, a vector V. = (V, Voo .. . V,) is filled
sequentially with the first k U,’s from the first LCG (k = 128 was originally sug-
gested). Then the second LCG is used to generate a random integer I distributed uni-
formly on the integers /15 2n6e0 k (see Sec. 8.4.2), and V; 1s returr?ed as the first
U(0, 1) variate; the first LCG then replaces this /th location in 'V with its next U,
and the second LCG randomly chooses the next returned random number from this
updated V, etc. Shuffling has a natural intuitive appeal, especially since we would
expect it to break up any correlation and greatly extepd the period. In‘dejed,
MacLaren and Marsaglia obtained a shuffling generator with very good statistical
behavior even though the two individual LCGs were quite poor. In a_subsequenc;
evaluation of shuffling, Nance and Overstreet (1978) confirm that shuffling oge ba
LCG by another bad LCG can result in & good composite generlal:(’fi)e-g&‘ tylift’l(_
tending the period when used on computers withishars wordflengd tsl;atu; ve?:tor o?
is aCCOmpliShed by shllfﬂil‘lg a gOOd LCG. In addition, they oun

length k = 2 works as well as much larger vectors.

Several variations on this shuffling scheme h
Durham (1976) and Gebhardt (1967) prope
Tather than by another generator. Atkinson

pplying a fixed permutation (rather than a random s

ave been considered; Bays and
e shuffling a generator by itself

(1980) also reported that simply
huffling) of the output of LCGs

402 RANDOM-NUMBER GENERATORS

: = initialize the {b,} sequence, b,
hich denotedb b, = bj_ (57) b,’—q"To mnitia A i YO 0
:ms(: b:’,sspeciﬁed s);m‘chow; this is akin to specifying the seed z{) for LCGg, b,
To form a sequence of binary integers Wi, W, . . ., We string together /
secutive b,’s and consider this as a number in base 2. That is,

W, = bbb

and
W, = buciymibgmiyrz by fori=2,3,. ..

1

Note that the recurrence for the W.'s is the same as the recurrence for the b/’s given
by (7.5), namely

W. = W._, (4] "V,‘fq (76)

where the exclusive-or operation is performed bitwise. The ith U(0, 1) randop,
number U, is then defined by

W,
U =—r forr=1,2,...

2{
The maximum period of the {b,} sequence is 2 — 1, since b,_, b, ,, ..., b
can take on 27 different possible states and the occurrence of the g-tuple 0, 0, . . . '_6

would cause the {5,} sequence to stay in that state forever. Let
VRS ete cx +]

be the characteristic polynomial of the recurrence given by (7.4). Tausworthe (1965)
§howed that the period of the b,'s is, in fact, 2¢ — 1 if and only if the polynomial f(x)
is primitive [see Knuth (1998a, pp. 29-30)] over the Galois field %, which is the set
{0, 1} on which the binary operations of addition and mulliplicm{nn modulo 2 are
dgﬁned. If 1 is relatively prime to 2¢ — 1, then the period of the W.'s (and the Us)
will _also be 27 — 1. Thus, for a computer with 31 bits for actual data storage, the
maximum period is 2°' — 1, which is the same as that for a LCG.

EXAMPLE 7.3. Letr =3 and g = 5 in Eq. (7.5), and let by=by,=--=b;=1
Thus, for i = 6, b, is the “exclusive-or” of b,_; with b,_. In this case, f(x) is the trino-

1 S : H g . e
mial X' + x* + 1, which is, in fact, primitive over %,. The first 40 b,’s are then

l|lllOOO]]O]llOlOlUOOO]OOIOIlOO]]Ill()()()l

Note that the period of the bits is 3] = 25 i

= 2° — 1, since b
through b, If I = 4 (which is rela
W's is obtained:

i . 1, through b, are the same as b,
tively prime to 31), then the following sequence of

15.8,13,13,4,2, 5,9, 131

which also has a period y
dividing the W,'slt):; 16 :fzaﬂ,l (see Prob. 7.15). The corresponding ©'s are obtained bY

The origi ivati ;
random n(:.lrrlr%lb:ari?ac;;l:;:mn e suggesting that the b,’s be used as a source of U0, 1)
bR idion/abic (::I;l the obseryauon that the recurrence given by (7.4) can be
ary computer using a Switching circuit called a linear feea’bﬂd‘

CHAPTER SEVEN 403

bi—s

bl—l

FIGURE 7.1
A LFSR corresponding to the recurrence (7.5) with » = 3 and qg=>5.

shift register (LFSR). This is an array of g bits that is shifted, say, to the left one
position at a time, with the bit shifted out on the left combined with other bits in the
array to form the new rightmost bit. Because of the relationship between the recur-
rence (7.4) and a feedback shift register, Tausworthe generators are also called
LFSR generators.

EXAMPLE 7.4. The generator discussed in Example 7.3 can be represented by the
LFSR shown in Fig. 7.1. The bits b, ; and b,_; are combined using the exclusive-or
operation to produce a new bit that goes into the rightmost location (i.e., the one that
previously contained bit b,_,) of the array. The bit that was in the leftmost location of
the array (i.e., b,_;) is removed from the array. The values of b, _, b,_,, b,_;, b, . and
b_ fori=6,7,..., 15 are given in Table 7.3.

Unfortunately, LFSR generators are known to have statistical deficiencies, as
discussed by Matsumoto and Kurita (1996) and Tezuka (1995). However, L’Ecuyer
(1996b, 1999h) considered combined LFSR generators, which have better statisti-
cal properties and a larger period.

Lewis and Payne (1973) introduced a modification of the LFSR generator that
they called a generalized feedback shift register (GFSR) generator. To obtain a
sequence of /-bit binary integers Y,, Y, . . ., the sequence of bits b, b,, . . - produced

TABLE 7.3
Successive states of the LFSR forr = 3and g = 5§

i b! h‘__‘ b}__\ b;'fz bi—l

=
——_ 00O~ = -
oSO = — = —
—o-r—~ 000 ——r—
S~ O~ —~000C—r—
—_——_e - 0O~

Source of bits.

406 RANDOM-NUMBER GENERATORS

7.4.1 Empirical Tests

o test a generator is to use it to generate Some 71
which are then examined statistically to see _hPW closely they resemble 1 U(O,i]s J
random variates. We discuss four such empirical tests; several others are treateg i
Banks et al. (2001, pp. 264-284). Fishman (1978, pp- 371-386), Knuth (1993&
pp. 41-75), L'Ecuyer et al. (2000), and L'Ecuyer and ‘Srmard (2001),

The first test is designed to check whether the U,’s appear to be uniform]y dis.
tributed between 0 and 1, and it is a special case of a test we have seep before (i
Sec. 6.6.2), the chi-square test with all parameters known. We divide [0, 1 into
subintervals of equal length and generate Uz, =7 U,. (As a genera rule,
should be at least 100 here.) Forj = 1,2, . .., k, letf; be the number of the U's U;at
are in the jth subinterval, and let

.y n\2
x‘=-T(f;‘;)

ni=

Perhaps the most direct way t

Then for large n, x* will have an approximate chi-square distribution with k—| df
under the null hypothesis that the U;'s are [ID U(0,1) random variables. Thus, e
reject this hypothesis at level a if Y’ > x;_, ., where x]_,,_, is the upper 1 — ¢
critical point of the chi-square distribution with & — 1 df. [For the large values of
likely to be encountered here, we can use the approximation

L il D e
Xi-1,1-a 9k — 1) e \.‘/9(1(=5

where z,_, is the upper 1 — a critical point of the N(0, 1) distribution.]

EXAMPLE 7.6. We applied the chi-square test of uniformity to the PMMLCG Z.=
630,360,016Z_ (mod2®' — 1), as implemented in App. 7A, using stream 1 with the
default seed. We took k = 2'> = 4096 (so that the most significant 12 bits of the U’s
are being examined for uniformity) and let n = 2" = 32,768, We obtained y’ =
4141.0; using the above approximation for the critical point, X 05000 = 4211.4, s0
the null hypothesis of uniformity is not rejected at level a = 0.10. Therefore, these
particular 32,768 U,'s produced by this generator do not behave in a way that is sig-
nificantly different from what would be expected from truly 11D U(0, 1) random vari-
ables, so far as this chi-square test can ascertain.

Our second empirical test, the serial rest, is really just a generalization of the

chijsquare test to higher dimensions, If the U’s were really 11D U(0, 1) random
variates, the nonoverlapping d-tuples

U|=(Ur~U2s--».Ud). UZ:(Ud+|'UJ13wA~-‘U11)

shouldbebe 11D Zandc.)rp vectors d}stributcd uniformly on the d-dimensional unit hy-
percube, [0, 1]°. Divide [0, 1] into k subintervals of equal size and generate Uy,

Uy,...,U, (requiring nd Us). Let f, 0 be the number of U,’s having first

3 : 3 : ik :
c l;nponent in sul?lntcwal J1» second component in subinterval J», etc. (It is easier ©
ta Ytheﬁ,,,._.,-dsmannug 2

ht be expected; see Prob. 7.7.) If we let
k

xz(d)=k—dii.‘_z(f _ 2
A e R R k")

CHAPTER SEVEN 407

i XZ(“’) will 'have an approxima!te chi-square distribution with ¥4 — 1 df.
See L'Ecuyer Simard, and Weggenkittl (2002) for further discussion of the serial

] The test for d-dimensional uniformity is carried out exactly as for the one-

st. :
3 ensional chi-square test above.

dim
EXAMPLE 7.7. Ford =2, we tested the null hypothesis that the pairs (U,, U,),
(Usyy Us)s - - - (Upp—iy Uyy) are IID random vectors distributed uniformly over the unit
square. We used the generator in App. 7A, but starting with stream 2, and generated n =
32,768 pairs of U/'s. We took k = 64, so that the degrees of freedom were again 4095 =
64> — 1 and the level & = 0.10 critical value was the same, 4211.4. The value of x*(2)
was 4016.5, indicating acceptable uniformity in two dimensions for the first two-thirds
of stream 2 (recall from Sec. 2.3 that the streams are of length 100,000 U,’s, and we used
2n = 65,536 of them here). For d = 3, we used stream 3, took k = 16 (keeping the de-
grees of freedom as 4095 = 16° — 1 and the level @ = 0.10 critical value at 421 1.4),
and generated n = 32,768 nonoverlapping triples of U;'s. And x*(3) was 4174.5, again
indicating acceptable uniformity in three dimensions.

Why should we care about this kind of uniformity in higher dimensions? If the
individlfal U’s are correlated, the distribution of the d-vectors U, will deviate from
d-dimensional uniformity; thus, the serial test provides an indirect check on the
assumption that the individual U s are independent. For example, if adjacent U’s
tend to be positively correlated, the pairs (U, U,) will tend to cluster around the
southwest-northeast diagonal in the unit square, and y*(2) should pick this up.
Finally, it should be apparent that the serial test for d > 3 could require a lot of
memory to tally the k/ values of f; ; ..., (Choosing k = 16 in Example 7.7 when
d = 3 is probably not a sufficiently fine division of [0, 1].)

The third empirical test we consider, the runs (or runs-up) test, is a more di-
rect test of the independence assumption. (In fact, it is a test of independence
only; i.e., we are not testing for uniformity in particular.) We examine the U, se-
quence (or, equivalently, the Z, sequence) for unbroken subsequences of ma:umf_ﬂ
length within which the Us increase monotonically; such a subsequence is
called a run up. For example, consider the following sequence U,, Uy, - . ., U_,o.'
0.86, 0.11, 0.23. 0.03, 0.13, 0.06, 0.55, 0.64, 0.87, 0.10. The sequence starts with
arun up of length 1 (0.86), followed by a run up of length 2 (0.11, 0.23), then
another run up of length 2 (0.03, 0.13), then a run up of length 4 (0.06, 0.55,
0.64, 0.87), and finally another run up of length 1 (0.10). From a sequence of n
U;'s, we count the number of runs up of length 1, 2, 3, 4, 5, and = 6, and then
define

. number of runs up of length i fort: =N, 10
i~ | number of runs up of length = 6 fori =6

y the r,’s. For the 10 U’s above, ry = 2,

(See P ithm to tall o
Edgien DT 0.) The test statistic is then

n=2r,=0,r,=1,r;=0andrs =

4
n;

a(r. — nb)(r; = nb))

y

[\/]o

[

R =

1J

408 RANDOM-NUMBER GENERATORS

where a, is the (i Jj)th element of the matrix

o 13568 18091 22615 27,802
3‘32323 13:833 27139 36187 45234 55789
13565 27139 40721 54281 67,852 83685
18001 36187 54281 72414 90470 111580
22615 45234 67852 90470 113262 13947
27802 55789 83685 111,580 139.476 172,860

and the b;’s are given by
29: FO1)
(ririog 5 985 be) = (év 'z%- ,112,'0‘ TIJ‘:: 5040 840,
[See Knuth (1998a, pp. 66—69) for derivation of these constants.* The a;'s givey
above are accurate to five significant digits.] For large n (Knuth recommends ,, >
4000), R will have an approximate chi-square distribution with 6 df, under the null
hypothesis that the U,’s are IID random variables.

EXAMPLE 7.8. We subjected stream 4 of the generator in App. 7A to the Tuns-up test,
using n = 5000, and oblainecj(r,, s ... Tg) = (808, 1026, 448, 139, 43, 4). leading 1o
a value of R = 9.3. Since y;,q = 10.6, we do not reject the hypothesis of indepen-
dence at level @ = 0.10.

The runs-up test can be reversed in the obvious way to obtain a runs-down
test; the a; and b, constants are the same. There are several other kinds of runs
tests, such as counting runs up or down in the same sequence, or simply counting
the number of runs without regard to their length; we refer the reader to Banks
et al. (2001, pp. 270-278) and Fishman (1978, pp- 373-376), for example. Recall
as well our discussion of runs tests in Sec. 6.3. Since runs tests look solely for in-
dependence (and not specifically for uniformity), it would probably be a good idea
to apply a runs test before performing the chi-square or serial tests, since the last
two tests implicitly assume independence.

The final type of empirical test we consider is a direct way to assess whether the
generated U;’s exhibit discernible correlation: Simply compute an estimate of the
correlation at lags j = 1, 2, . . . , [for some value of / Recall from Sec. 4.3 that

the correlation at lag ;i a sequence X, X, . . . of random variables is defined as
p; = C/C,, where

q = COV(X,:‘ Xﬁ“}) = E(‘X’l Xi*j) = E(X()E(X, +j)
ries in the Sequence separated by j; note that Cy =

at the process is covari i
. V. . - see Sec. 4.3)
In our case, we are interested in ¥ — AlEse onary s sec SeC

i e i = U, and under the h i g are
fi i e hypothesis that the U;’s
uniformly dlS('Ilbl.lled on [0;1]' we have E(U) = l and Va‘:-(U) = 'iJ:v s that G, =

E U U'+ " — X
(UU,) =+ and Co = 53 Thus, p = IzE(U.U.+j) e it ToaseniDiome
-

*Knuth, D. E., The Ars of Com, an
' iputer Pr 1
Reproduced by permission of Pearson oEgdr g, Vol. 2, p. 67, © 1998, 1981 Pearson Education, In¢:

ucation, Inc, AJl nights reserved.

CHAPTER SEVEN 409

equence G o o U, f’f generated values, a
by estimating E(U,U,)) directly from U,U

A) &

P h+1 ;}UHU U1+(&+|y — %)

n estimate of p;can thus be obtained
1+ Uy 4y, ete., to obtain

where i = | (n—1)/j] — 1. Under the further assumption that the U,’s are indepen-
dent, it turns out [see, for example, Banks et al. (2001, p. 279)] that

13h + 7
(h + 1)

Under the null hypothesis that p, = 0 and assuming that n is large, it can be shown
that the test statistic

Var(p,) =

P
V Var(p))

has an approximate standard normal distribution. This provides a test of zero lag j
correlation at level a, by rejecting this hypothesis if A | > z,_,/,. The test should
probably be carried out for several values of j, since it could be, for instance, that
there is no appreciable correlation at lags 1 or 2, but there is dependence between
the U's at lag 3, due to some anomaly of the generator.

A =

EXAMPLE 7.9. We tested streams 5 through 10 of the generator in App. 7A for corre-
lation at lags 1 through 6, respectively, taking n = 5000 in each case; i.e., we tested
stream 5 for lag 1 correlation, stream 6 for lag 2 correlation, etc. The values of A, A,,
..., A, were 090, —1.03, —0.12, —1.32, 0.39, and 0.76, respectively, none of which
is significantly different from 0 in comparison with the N(0, 1) distribution, at level
a = 0.10 (or smaller). Thus, the first 5000 values in these streams do not exhibit
observable autocorrelation at these lags.

As mentioned above, these are just four of the many possible empirical tests. For
example, the Kolmogorov-Smirnov test discussed in Sec. 6.6.2 (for the case with all
parameters known) could be applied instead of the chi-square test for one-dimensional
uniformity. Several empirical tests have been developed around the idea that the gen-
erator in question is used to simulate a relatively simple stochastic system _w1th
known (population) performance measures that the simulation estimates. The simu-
lated results are compared in some way with the known exact “answer;.” perhaps by
means of a chi-square test. A simple application of this idea fs seen in Prol?. 7.10;
Rudolph and Hawkins (1976) test several generators by using them to simulate
Markov processes. In general, we feel that as many empirical tests should be per-
formed as are practicable. In this regard, it should be mentioned that there are _several
comprehensive test suites for evaluating random-number gengrators. These include
DIEHARD [Marsaglia (1995)], the NIST Test Suite [Rukhin et al. (2001}, and
TestUo] (1 Ecuyer and Simard (2005)], with the last gackage containing more than
60 empirical tests, These test suites are also deseribed in Genllc_(.2003- pp. 79-85).

Lest the reader be left with the impression that the empirical tests we have
Presented in this section have no discriminative power at all, WCNSl.lbje?tt;d thg
Infamoyg generator RANDU [defined by Z = 65,539Z,_,(mod 2°)], with see

P | e

TR

410 RANDOM-NUMBER GENERATORS

4= 123,456,789, to the same
tistics were as follows:

Chi-square test: Y = 42020
Serial tests: () = 42023

X:(3) = 16,2523
Runs-up test: RIS = 6.3

AllA's were insignificant

acceptable on [0, 1] and on the unit square, note the enoy
mensional serial test statistic, indicating a severe Proble;l;
of uniformity on the unit cube. RANDU is a fata])

ly to its utter failure in three dimensions; we shal] sez

Correlation tests:

While uniformity appears
mous value of the three-di
for this generator in terms
flawed generator, due primari

why in Sec. 7.4.2.
One potential disadvantage of empirical tests is that they are only local; i.e., only

that segment of acycle (for LCGs, for example) that was actually used to generate the
U;'s for the test is examined, so we cannot say anything about how the generator
might perform in other segments of the cycle. On the other hand, this local nature of
empirical tests can be advantageous, since it might allow us to examine the actual ran-
c!om numbers that will be used later in a simulation. (Often we can calculate ahead of
t]mg how many random numbers will be used in a simulation, or at least get a conser-
vative estimate, by analyzing the model’s operation and the techniques used for gen-
erating the necessary random variates.) Then this entire random-number stream can
be tested empirically, one would hope without excessive cost. (The tests in Examples
7.6 through 7.9 were all done together in a single program that took just a few seconds
on an qld. modest computer.) A more global empirical test could be performed by
replicating an‘entire test several times and statistically comparing the observed values
of the test statistics against the distribution under the null hypothesis: Fishman (1978,
pp. 371-372) suggests this approach. For example, the runs-up test of Example 7.8
could be done, say, 100 times using 100 separate random-number streams from the
;m:t;ge;eratg. ;aCh of length SOOQ. This would result in 100 independent values for
e,,(ampie c;:: K_[Se[n l:e go}:ngared with the chi-square distribution with 6 df using, for
% identif" AR est wit !pgrameters known. Fishman'’s approach could be used
i _y 3|a segments within a cycle of a LCG; this was done for the PMMLCG
with m= 2" — landa = 630,360,016, and a “bad” segm as indeed discovered
and eliminated from use in SIMSCRIPT o 153 o
we would expect thateven a = IL5 [see Fishman (1973a, p. 183)]. However
produce an “unacccplab]een' 'atesl:;e srtfaeg;li?r'ld(;m"numbcr generator would occasionlﬂl_ly
a = the level of the test being done Th;J;nilag ; th;s EeE w0 timppen it pr?ba-blhr)}
segments to avoid “bad” ones is in fact a l;Oor?geae e -

7.4.2 Theoretical Tests

We now discuss theoretical t

. ss. ests fo -
are quite sophisticated and mathem:‘lrtir::I?om
what qualitatively; for detailed accounts
(1998a, pp. 80-115), and L'Ecuyer (19

number generators. Since these tests
¥ complex, we shall describe them some-
see Fishman (1996, pp. 607-628), Knu?
98, pp. 106-114). As mentioned earlic?

tests as in Examples 7.6 through 7.9. The teg 8
St st.

r .

CHAPTER SEVEN 411

sts do not require that we generate any U,'s at all but are a priori in that
they indicate how well a generator can perform by looking at its structure and defin-
. constants. Thcoretlc‘:al tests also differ from empirical tests in that they are
al: i€, @ generator's behavior over its entire cycle is examined. As We men-
at the end of Sec. 7.:4. 1, it is debatable whether local or global tests are prefer-
obal tests have a natural appeal but do not generally indicate how well a
segment of a cycle will behave.
[t is sometimes possible to compute the “sample” mean, variance. and correla-
over an entire cycle directly from the constants defining the generator. Many
sults are quoted by Kennedy and Gentle (1980, pp. 139-143). For exam-
|I-period LCG, the average of the U/’s, taken over an entire cycle, s
hich is seen to be very close to the desired % if m is one of the large
é’alUCS (in the billions) typically used; see Prob. 7.14. Similarly, we can compute the
«sample’” variance of the U;'s over a full cycle and get =1 12m7%), which is close
{0 5, the variance of the U(0, 1) distribution. Kennedy and Gentle also discuss “sam-
ple"' correlations for LCGs. Although such formulas may seem comforting, they can
be misleading: €8, the result for the full-period LCG sample lag 1 correlation sug-
gests that, to minimize this value, a be chosen close 10 \/m, which turns out to
be a poor choice from the standpoint of other important statistical considerations.
The best-known theoretical tests are based on the rather upsetting observation
by Marsaglia (1968) that “random numbers fall mainly in the planes.” That is, if U},

peoretical €

g?()b
goned
able; gl
[ECiﬁC

tions
of these 1€
le, in a fu
I _ 1/(2m), W

U,, ...I1s a sequence of random numbers generated by a LCG, the overlapping
d-tuples (U}, Uy, - -+ s Uy, Uy Us, .- - Uy.p), - .- willall fall on a relatively small
~ 1)-dimensional hyperplanes passing through the d-dimensional

number of (d

unit hypercube [0, 1]°. For example, if d = 2, the pairs (U,, Uy, (U, U3), - - -

will be arranged in a “lattice” fashion along several different families of parallel
lines going through the unit square. The lines within a family are parallel to each
other, but lines from different families are not parallel.

In Figs. 7.2 and 7.3, we display all possible pairs (U, U,,,) for the full-period
multiplicative LCGs Z, = lSZ,,,,(mod 101) and Z, = ZZ,_](mod 101), respectively.
(The period is 100 in each case, since the modulus m = 101 is prime and each value
of the multiplier a is a primitive element modulo m.) While the apparent regularity
in Fig. 7.2 certainly does not seem Very “random,” it may not be too disturbing since
the pairs seem to fill up the unit square fairly well, or at least as well as co_uld be ex-
pected with such a small modulus. On the other hand, all 100 pairs in Fig. 7.3 fall
on just two parallel lines, which is definitely anxiety—provo_king, §|nce .there are
large areas of the unit square where we can never realize a pair of U,’s, a simulation
using such a generator would almost certainly produce invalid results. :

The same difficulties occur in three dimensions. In Fig. 7.4, 2000 triples
W, U,,, U,,,) produced by the infamous multiplicative LCG generator WDU
(m = 2% and a — 65.539) are displayed, viewed from a particular point out51de_ of
the unit cube. Note that all triples of Iy 15 parallel planes passing

U;'s fall on ony °9 .
[hrough the unit cube. (In general, all the roughly half-billion triples across the pe-
riod fall on these same planes.) This explains the

ific performance of RANDU
on the three-dimensional serial test noted at the en

horrt
Among all families of parallel hyperplanes that coVet

d of Sec. 7.4.1.
all overlapping d-tuples
U, u i) take the one for which adjacent hyperp

lanes are farthest

S R

s

e

g

412 RANDOM-NUMBER GENERATORS

0

FIGURE 7.2
Two-dimensional lattice structure for the full-period LCG with m =

10l and a = 18.

0 4

FIGURE 7.3

Two-dimensional lattj
Lt
0landa =g otueture for the full-period LCG with m =

CHAPTER SEVEN 413

FIGURE 7.4
Three-dimensional lattice structure for 2000 triples from the

multiplicative LCG RANDU with m = 2’ and a = 65,539.

(m, a). The idea of computing 8,(m, a) was sug-

s typically called the spectral test.

apart and denote this distance by 8,
uld

gested by Coveyou and MacPherson (1967) and i
If 8,(m, a) is small, then we would expect that the corresponding generator Wo

be able to uniformly fill up the d-dimensional unit hypercube [0, 1!"-

_For LCGs it is possible to compute a theoretical lower bound &;(m) on 8, (m, a),
which is given by the following:
foralla

8, (m, a) = d,(m) =
4(m, a) d Ya Ve
where v, is a constant whose exact value is known only for d = 8. We can then
define the following figures of merit for a LCG:
 dym)
S,(m, a) B_A(_m,.a)

and
My(m, a) = min, - g=s Sq(m: @)

IR T —

414 RANDOM-NUMBER GENERATORS

TABLE 7.5
The results of the spectral test for some LCGS

Generator T —

=2Y-1 m=2Y-1

Figure of m=2"-1 m =2 mas
S asa o 1680 a=a,= 6030016 a=T9WAS o 65; ;9
S,(m, a) 0338 0.821 0.867 093
Sy(m, @) 0.441 0432 0.861 0; 0'] s
Sy(m, a) 0.575 0.783 0.863 0.060
Sy(m, a) 0.736 0.802 0.832 0157
Sg(m, a) 0.645 0.570 0.834 0293
S,(m, a) 0.571 0.676 0.624 045%
Sg(m, a) 0.610 0.721 0.707 U»()l‘7
Mg(m, a) 0338 0.432 0.624 0,012

These figures of merit will be between 0 and 1, with values close to 1 bejp
desirable. Methods for performing the spectral test [i.e., for computing 8, (m, a)] arﬁ
discussed by Knuth (1998a, pp. 98-104) and L' Ecuyer and Couture (1997),

Values of §,(m, a) and My(m, a) are given in Table 7.5 for several well-known
LCGs. The LCGs in columns 2 and 3 with multipliers @, and a, were discussed in
Sec.7.2.2, and it’s seen that the latter generator is superior relative to the spectral (est
The generator in column 4 with a = 742,938,285 was found by Fishman and Moorc‘
(1986) in an exhaustive search to be the best relative to the criterion M(2*'~1, a)
Fmally, in column 5 are the results of the spectral test for RANDU: its p(:or beha‘vior-
in d = 3 dimensions is clearly reflected in the value 5.2, 65,539) = 0.012.

Other figures of merit have been suggested to measure the quality of a random-
number generator in terms of its lattice structure. These include the lattice test [see
Beyer et al. (197IA),_L'Ecuyer and Couture (1997), and Marsaglia (1972)] and
computing the minimum number of hyperplanes that contain_ all d-tuples
(U, Uy, ..., U, [see Fishman (1996, pp. 617-620)].

7.4.3 Some General Observations on Testing

;I::-: Zremt?ﬁlr; \;a:;ﬁ_ie?:gm;fe Ofkcomp!exlty of tests for random-number genera-
always will be) consideral'ale make matters worse, there has been (and probably
PEhCal et e ol controversy over which tests are best, whether theo-
amount of testing canO\:e detf)imuve than empirical tests, and so on. Indeed, 0
generator is absolutely “ih:rba S?lumly convince everyone that some particular
ever, is that a random-numbereSL One piece of advice that is often offered, hoW-
with its intended use. Thi senerator should be tested in a way that is consistem

€. 1his would entail, for example, examining the behavior of

pairs of U/’s (perh : : i

naturally dsec(ipin ngss‘i:ttzeﬂ:;‘:&‘_j‘m?nsmna] serial test) if random numbers ar
: 10 : "

imply that one should be more car: n itself. In a broader sense, this advice woul

' efq] In choosing and testing a random-number

CHAPTER SEVEN 415

APPENDIX 7A
SORTABLE C CODE FOR A PMMLCG

Here W€ present ccﬂnPUlEr code in C to implement the PMMLCG defined by mod-
alus m = m* = 27 — 1 =2,147.483,647 and multiplier a = a, = 630,360,016,
discussed at the end of Sec. 7.2.2. The code shown here can be downloaded from
www.mhhe.comﬂaw. This code is based closely on the FORTRAN code of Marse
and Roberts (1983), and it requires that integers between —m* and m* be repre-
sented and computed correctly. This generator has 100 different streams that are
spaced 100,000 apart.

It is gcncra]ly not recommended that this generator be used for serious real-
world applications, since the combined MRG in App. 7B has much better statistical
pmperties. _

Figure 7.5 gives code for an ANSI-standard C (i.e., using function prototyping)
version of this generator, in three functions, as detailed in the comments. Figure 7.6
gives a header file (Icgrand.h) that the user must #include to declare the functions.
We have used this code on a variety of computers and compilers, and it was used in
the C examples in Chaps. 1 and 2.

/* Prime modulus multiplicative linear congruential generator
7(i] = (630360016 * Z[i-1]) (mod(pow(2,31) - 1)), based on Marse and Roberts'
portable FORTRAN random-number generator UNIRAN. Multiple (100) streams are
supported, with seeds spaced 100,000 apart. Throughout, input argument
vgtream" must be an int giving the desired stream number. The header file
lcgrand.h must be included in the calling program (#include "lcgrand.h")

before using these functions.
Usage: (Three functions)

1. To obtain the next U(0,1) random number from stream "gtream, " execute

u = lcgrand(stream); A 2
where lcgrand is a float function. The float variable u will contain the

next random number.

2. To set the seed for stream "stream" to a desired value zset, execute
lcgrandst (zset, stream);

where lcgrandst is a void function and zs

desired seed, a number between 1 and 2147483646 (inclusive).
seeds for all 100 streams are given in the code.

et must be a long set to the
Default

in the sequence being

3. To get the current (most recently used) integer
jable zget, execute

generated for stream "stream" into the long vari
zget = lcgrandgt(stream);
where lcgrandgt is a long function. */

/* Define the constants. */

#define MODLUS 2147483647

define MULT1 24112

#define MULT2 26143

/* Set the default seeds for all 100 streams. */

FIGURE 7 5

C code for the PMMLCG with m = 23 — landa = 630,360,016 based on Marse and
Roberts (1983).

