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TABLE VIII
QOS TECHNICAL SPECIFICATION

No. Technical
Parameters

Recommendation Reference

a. Traffic Handling
Mechanism

Weight Round
Robin, Strict
Priority TR

BBF (101, 156,
247, 331)

b. Diffserv DSCP mapping to
Priority

TR BBF (101,
156, 247, 331)

field [9]. The requirement statement is suitable with WRR
and SP results that support and manage four traffic classes.
Moreover, the access node must support the scheduling of user
queues according to strict priority among at least four queues.
Furthermore, the access node should support the scheduling
of user queues according to their assigned priority and weight
[9].

Another recommendation for QoS specification is the ca-
pability of XGS-PON to support DSCP mapping to priority.
The reason is that the XGS-PON must support at least four
traffic classes for Ethernet frames and should at least six traffic
classes for Ethernet frames [15].The testing result shows that
XGS-PON supports eight traffic classes for Ethernet frames.
Furthermore, the DSCP mapping to priority recommendation
chosen with consideration of the XGS-PON should support
mapping between L2 layer QoS marking and IP layer CoS
marking according to [16]. Besides, a statement about traffic
is classified into VLANs with various Ethernet priorities based
on criteria, and one of them is DSCP [15].

V. CONCLUSION

The XGS-PON shows several capabilities of QoS following
requirements in the Technical Report Broadband Forum. First,
the XGS-PON support traffic management using scheduling
mechanism WRR and SP. The WRR in XGS-PON can control
traffic with the highest and lowest priority to pass band-
width with a value of 10% and 40% of the total traffic set.
Meanwhile, the SP test result proves that XGS-PON can pass
100% bandwidth only at the highest or lowest priority. Both
results show that XGS-PON can handle four traffic classes
for Ethernet frames from the eight possible values of the
Ethernet priority field. Other test results successfully show the
function of DSCP mapping to the priority that can map DSCP
value into 802.1p priority. The result captured the seven traffic
classes consisting of Best Effort, Assured Forwarding, and
Class Sector. These prove that the XGS-PON can comply with
the QOS function with ITU-T G.9807 and several Broadband
Forum technical reports.

The proposed QoS parameter can be taken into consid-
eration by regulators and operators in order to implement
XGS-PON. The stakeholders use QoS parameters as part
of the technical requirements for the deployment of XGS-
PON infrastructure. The reason is that QoS plays a vital
role in determining the quality of telecommunication network
connectivity. Moreover, the experimental setup is used to test
the QoS capabilities of XGS-PON. The QoS testing method

can be used to evaluate the XGS-PON QoS performance both
for operators and regulators. It is recommended for the next
researcher to explore the performance of other QoS models.
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Abstract—Sparse Representation based Classification for Face
Recognition (SRC-FR) has becomes popular, because of its ability
to overcome several problems in FR such as occlusion and
image corruption. Given this advantages, this method suffers
from heavy computational process. In this paper we propose
dimensionality reduction of image samples to reduce the compu-
tational burden. This reduction is performed by multiplying the
feature matrix with random projection matrix (Φ) of smaller
size than feature matrix A. Two random projection matrices
are generated using Gaussian and Uniform distribution. Several
reduction factor in matrix Φ are verified which are from 1 to 256,
are evaluated. Higher reduction factor indicates higher dimen-
sionality reduction. As a reference we compared the proposed
reduction method to the classical linear down scaling the image.
The simulation results on AT&T Dataset that consist of 400
images shows that the proposed method with reduction factor
of 8 to 256, achieve recognition rate higher than the classical
linear down-scaled method. In addition, the proposed method
also shows a better recognition rate up to 5% to the original
SRC method.

Index Terms—Compressive Sensing, Sparse Representation,
SRC, Face Recognition, Random Projection

I. INTRODUCTION

Face recognition (FR) is a technology for bio-metric recog-
nition based on knowledge of human facial features [1].
This technology has a wide range of applications such as
security, personal information access, personal ads and etc.
There are several problems of face recognition are identified
such as variations in illumination [2], pose variation [3] [4],
occlusions [5], human expressions [6], picture alignment [7],
and resolution diversity [8]. The requirements for FR in
ubiquitous environment demands the ability to handle large
database and match within seconds. Also there are several
parameters have to be optimized when designing FR system
which are storage requirements, computational complexity,
and recognition accuracy.

Training and testing phases are the two modes of the FR
systems. Each phase is typically comprised of the following
fundamental components: pre-processing, feature extraction,
and classification. Several algorithms has been proposed for
effective and efficient FR. According to Gondhi et al. [9], there
are six approaches for FR: knowledge-based, appearance-
based, feature invariant, geometry-based, template-based, and
model-based methods. Every technique has its own strengths
and weaknesses. Despite considerable interest in the past
years, existing pattern recognition methods still strive to clas-
sify faces in the presence of all kinds of image imperfections
[10].

Over the last few years, Compressive Sensing or Compres-
sive Sampling (CS) has been one of the interesting topics
in signal processing and optimization, that is popularized by
Candés et al. This theory was implemented for the first time
in 2006 by Donoho [11]. Using CS, Donoho has revolutionary
shifted the paradigm for sensing or sampling that challenges
traditional data acquisition knowledge that uses Shannon The-
ory [12]. The CS theory exploits the fact that many natural
signals are either sparse or compressible by selecting right
basis [13].

In recent years, several variants of sparse representation
methods have been proposed. Huang et al. [14], sparsely
coded a signal over a set of redundant bases and classified
the signal based on its coding vector. Yang et al. [15], intro-
duced a new approach based on sparse signal representation,
to single-image super-resolution. Li et al. [16], present an
iterative sparse-representation-based voxel detection algorithm
in functional MRI (fMRI) data with task-related information.
Guha et al. [17], studied the utility of sparse representations
using learned over-complete dictionaries in the context of
video-based action modeling and recognition. Wright et al.
[18], reported a work using sparse representation for face

978-1-6654-4305-0/21/$31.00 ©2021 IEEE
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recognition. This technique is known as Sparse Representation
Based Classification (SRC).

The SRC algorithm’s main idea is that a face image can be
linearly represented by the other samples in the same class. In
contrast, the different classes are linearly independent. A face
data set consists of some face images, described as a matrix
A ∈ Rw×h, where w and h represent the height and the
width of the face image, respectively. In many face recognition
algorithms, the vectorized version of matrix A denoted by
v ∈ Rm and m = w × h is used to represent the face image
data training samples.

The SRC algorithm proposed by Wright et al. provide a
complete solution to address FR issues, such as reducing
computation complexity by using down-sampled feature ex-
tractions methods, handling sample corruption and occlusions,
and also combating the image corruption and occlusion. Nev-
ertheless, the extensive database of samples is required to
fulfill the sparseness conditions. In addition, more samples are
required for pose variations handling. This condition means a
bulky sizes of databases. Thus, naturally SRC suffered from
high computational complexity.

Many complementary algorithms have been proposed in
recent years to improve the accuracy and performance of
SRC. Deng et al. [19], proposed extended SRC and applies an
auxiliary intra-class variant dictionary to represent the possible
variation between the training and testing images. Mi and Liu
[20], proposed sparse representation-based classification on k-
nearest subspace to lower the computational complexity. Yang
et al. [21], discussed fast �1-minimization algorithms for Ro-
bust Face Recognition. Recent review of sparse representation
for under-sample data, where very few images of the subject
of interest might be captured during the acquisition stage, e.g.
passport, driving license, ID Card identification.

Dimensionality reduction of the training samples is one
major factor for the practical implementation of SRC. The
original size of the training samples is directly affected by
the number of computations, hence impacting the algorithm’s
complexity. Dimension of the raw images Rm should be
reduced to the lower-dimensional feature space Rd (d � m),
by trade-off the recognition performance [22]. This dimen-
sionality reduction is also perceived as feature extraction of
original sample images.

The dimensionality reduction can be performed by linear
transformation such as popular Discrete Cosine Transform
(DCT) or more complex transform such as Fast Fourier Trans-
form (FFT) or Discrete Wavelet Transform (DWT) [23]. The
dimensionality reduction generally will decrease the recog-
nition performance. On the other hand, Quan et al. [24]
suggested that to increase the discriminating power of the
SRC, we need to improve the dimensionality of the image
database.

In this paper, random projection is reinvented and proposed
to perform dimensionality reduction of images or samples for
the SRC FR method. The random projection is chosen due to

its simple computation process compared to others that use
more complex transformations. The idea to use the random
projection is derived from compressive sensing method that
used the random projection. The existing complex dimen-
sionality reduction is aimed to have good image recovery or
recognition by human eyes. In contrast, in face recognition,
the objection is emphasized on how the test sample is iden-
tified to the correct class or subject based on the training
samples of subjects. The notion is that the test sample or
training samples themselves do not have to recognizable by
naked human eyes as a picture but must be able to detect
correctly by the algorithm of face recognition or by the simple
statement that mathematically can perform the computation
to do the correct classification of a test sample. The random
projection has been simulated by Wright et al. [18], using
the Gaussian random matrix projection and the result marked
that the random faces can be used. In this paper the random
projection is studied further, the other distribution function
such as Uniform distribution is inspected, and the probability
of recognition enhancement when random projection is applied
is also inspected. The reinvented proposed random projection
sparse representation classification method is abbreviated as
RP-SRC.

The proposed RP-SRC performance is compared to classical
common linear down-scaled dimensionality reduction that is
provided in the Python function. The comparison of these two
methods will be on the same reduction factor from the source
images Rm to the extraction image Rd.

II. RANDOM PROJECTION SRC ALGORITHM

The simple formulation of reduction factor ρ from the
sample images Rm to the extraction image Rd is as follow
[25]:

ρ =
m (original size)

d (projected size)
(1)

The robust SRC face recognition is formulated by Wright
et al. [18] as follow:

y = Ax ∈ Rm (2)

In the case of FR, y represented the image to be recognized,
A is training sample columnwise database matrix and x is a
sparse matrix.

Then the proposed dimensionality reduction using random
projection matrix Φ transform from Rm to Rd (d � m):

γ = Φy ∈ Rd (3)

ℵ = ΦA ∈ Rd (4)

γ = ℵx ∈ Rd (5)

γ is a projected testing samples that is sparse representation
of projected training samples ℵ. The proposed projection
matrix Φ is the random matrix. Figure 1 illustrates the matrix
multiplication process of equation (2), (3) and (4).
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Under generic conditions, the expected sparsest solution x0

to equation (3) or (4) is unique, and can be solved via a lower
complexity convex optimization [26].

Fig. 1. Matrix Multiplication Illustration

x̂1 = argmin ||x||1
x∈Rd

s.t ||ΦAx− γ||2 ≤ ε (6)

or s.t
x̂1 = argmin ||x||1

x∈Rd

||ℵx− γ||2 ≤ ε (7)

For x̂1 to have unique solution, then d must not be very
small. According to Chen et al. [26], if ς represents the
sparseness and η is the number of all training samples, then
x̂1 can be exactly recovered, when the number d fulfills:

d ≥ O(η log ς/η) (8)

with overwhelming probability:

p ≥ 1− eO(−d) (9)

According to Candés et al. [13], this random projection
matrix must fulfil the Restricted Isometric Property (RIP) to
recover unmeasured data. Several random distribution fulfill
the RIP, for example Gaussian and Uniform random distribu-
tion. Both distributions are used in this simulation. It also
shows a very low coherence with any fixed representation

Ψ [18]. However, the random sensing matrix Φ itself, when
applied in Random Projected SRC (RP-SRC) equations (3) to
(7) randomly hypothetically, may increase the sparsity of the
images or subjects in the matrix A dictionary. Hence it could
improve the performance of face recognition itself.

The SRC classical face recognition problem always comes
along with any method: image corruption, occlusion, pose
variation, and illumination variation. The robust term of [18]
is referred to the ability of the SRC method to overcome most
of these classical problems. These image inconveniences may
affect the representation to deviate from the linear model at
equations (1) to (3). The modification of equation due to this
occlusion or corruption is as follow:

γ = Φy + e = ΦAx+ e (10)

γ = ℵx+ e (11)

e is an unknown vector with nonzero values related to the
corrupted pixels in the observation of γ. The errors e may
be significant in magnitude and hence is cannot be neglected.
However, like the vector x, in the most cases, e are sparse,
while occlusion and corruption generally affect only a fraction
of ρ < 1 of the image pixels. Hence, the problem of face
occlusion can be solved by the same as sparse representation
x by solving a combined �1-minimization problem:

x̂1 = min
x,e

||x+ e||�1 = min
x

||x||�1 ∈ Rmx(m+n) (12)

s.t ||ΦAx− γ||2 ≤ ε (13)

or s.t ||ℵχ− γ||2 ≤ ε (14)

General algorithm of RP-SRC is derived as follow:

Algorithm 1 Algorithm for RP-SRC
Input: a matrix of training samples

A = [A1, A2, ..., Ak] ∈ Rmxn for k classes.
a test sample γ ∈ Rm (and optional error tolerance ε > 0)

Output: class (γ) = argmin ri(γ
x

)

Normalize the column of A to have unit �2-norm
Solve the �1-minimization problem:
x̂1 = argmin ||x||1

x
s.t ΦAx = γ

(Or alternatively, solve
x̂1 = argmin ||x||1

x
s.t ||ΦAx− γ||2 ≤ ε

Compute the residuals
ri(γ) = ||γ −ΦAαi(x̂1)||2 for i = 1, 2, ..., n

It was observed in [18] [27] that this optimization performs
well in correcting occlusion and corruption. For block oc-
clusions that covering up to 20% of the face and random
corruptions affecting less than 70% of the image pixels the
method can recognize well without error. However, it was
also observed, the matrix χ as equation (12) in classical SRC
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recognition. This technique is known as Sparse Representation
Based Classification (SRC).

The SRC algorithm’s main idea is that a face image can be
linearly represented by the other samples in the same class. In
contrast, the different classes are linearly independent. A face
data set consists of some face images, described as a matrix
A ∈ Rw×h, where w and h represent the height and the
width of the face image, respectively. In many face recognition
algorithms, the vectorized version of matrix A denoted by
v ∈ Rm and m = w × h is used to represent the face image
data training samples.

The SRC algorithm proposed by Wright et al. provide a
complete solution to address FR issues, such as reducing
computation complexity by using down-sampled feature ex-
tractions methods, handling sample corruption and occlusions,
and also combating the image corruption and occlusion. Nev-
ertheless, the extensive database of samples is required to
fulfill the sparseness conditions. In addition, more samples are
required for pose variations handling. This condition means a
bulky sizes of databases. Thus, naturally SRC suffered from
high computational complexity.

Many complementary algorithms have been proposed in
recent years to improve the accuracy and performance of
SRC. Deng et al. [19], proposed extended SRC and applies an
auxiliary intra-class variant dictionary to represent the possible
variation between the training and testing images. Mi and Liu
[20], proposed sparse representation-based classification on k-
nearest subspace to lower the computational complexity. Yang
et al. [21], discussed fast �1-minimization algorithms for Ro-
bust Face Recognition. Recent review of sparse representation
for under-sample data, where very few images of the subject
of interest might be captured during the acquisition stage, e.g.
passport, driving license, ID Card identification.

Dimensionality reduction of the training samples is one
major factor for the practical implementation of SRC. The
original size of the training samples is directly affected by
the number of computations, hence impacting the algorithm’s
complexity. Dimension of the raw images Rm should be
reduced to the lower-dimensional feature space Rd (d � m),
by trade-off the recognition performance [22]. This dimen-
sionality reduction is also perceived as feature extraction of
original sample images.

The dimensionality reduction can be performed by linear
transformation such as popular Discrete Cosine Transform
(DCT) or more complex transform such as Fast Fourier Trans-
form (FFT) or Discrete Wavelet Transform (DWT) [23]. The
dimensionality reduction generally will decrease the recog-
nition performance. On the other hand, Quan et al. [24]
suggested that to increase the discriminating power of the
SRC, we need to improve the dimensionality of the image
database.

In this paper, random projection is reinvented and proposed
to perform dimensionality reduction of images or samples for
the SRC FR method. The random projection is chosen due to

its simple computation process compared to others that use
more complex transformations. The idea to use the random
projection is derived from compressive sensing method that
used the random projection. The existing complex dimen-
sionality reduction is aimed to have good image recovery or
recognition by human eyes. In contrast, in face recognition,
the objection is emphasized on how the test sample is iden-
tified to the correct class or subject based on the training
samples of subjects. The notion is that the test sample or
training samples themselves do not have to recognizable by
naked human eyes as a picture but must be able to detect
correctly by the algorithm of face recognition or by the simple
statement that mathematically can perform the computation
to do the correct classification of a test sample. The random
projection has been simulated by Wright et al. [18], using
the Gaussian random matrix projection and the result marked
that the random faces can be used. In this paper the random
projection is studied further, the other distribution function
such as Uniform distribution is inspected, and the probability
of recognition enhancement when random projection is applied
is also inspected. The reinvented proposed random projection
sparse representation classification method is abbreviated as
RP-SRC.

The proposed RP-SRC performance is compared to classical
common linear down-scaled dimensionality reduction that is
provided in the Python function. The comparison of these two
methods will be on the same reduction factor from the source
images Rm to the extraction image Rd.

II. RANDOM PROJECTION SRC ALGORITHM

The simple formulation of reduction factor ρ from the
sample images Rm to the extraction image Rd is as follow
[25]:

ρ =
m (original size)

d (projected size)
(1)

The robust SRC face recognition is formulated by Wright
et al. [18] as follow:

y = Ax ∈ Rm (2)

In the case of FR, y represented the image to be recognized,
A is training sample columnwise database matrix and x is a
sparse matrix.

Then the proposed dimensionality reduction using random
projection matrix Φ transform from Rm to Rd (d � m):

γ = Φy ∈ Rd (3)

ℵ = ΦA ∈ Rd (4)

γ = ℵx ∈ Rd (5)

γ is a projected testing samples that is sparse representation
of projected training samples ℵ. The proposed projection
matrix Φ is the random matrix. Figure 1 illustrates the matrix
multiplication process of equation (2), (3) and (4).
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to equation (3) or (4) is unique, and can be solved via a lower
complexity convex optimization [26].

Fig. 1. Matrix Multiplication Illustration

x̂1 = argmin ||x||1
x∈Rd

s.t ||ΦAx− γ||2 ≤ ε (6)

or s.t
x̂1 = argmin ||x||1

x∈Rd

||ℵx− γ||2 ≤ ε (7)

For x̂1 to have unique solution, then d must not be very
small. According to Chen et al. [26], if ς represents the
sparseness and η is the number of all training samples, then
x̂1 can be exactly recovered, when the number d fulfills:

d ≥ O(η log ς/η) (8)

with overwhelming probability:

p ≥ 1− eO(−d) (9)

According to Candés et al. [13], this random projection
matrix must fulfil the Restricted Isometric Property (RIP) to
recover unmeasured data. Several random distribution fulfill
the RIP, for example Gaussian and Uniform random distribu-
tion. Both distributions are used in this simulation. It also
shows a very low coherence with any fixed representation

Ψ [18]. However, the random sensing matrix Φ itself, when
applied in Random Projected SRC (RP-SRC) equations (3) to
(7) randomly hypothetically, may increase the sparsity of the
images or subjects in the matrix A dictionary. Hence it could
improve the performance of face recognition itself.

The SRC classical face recognition problem always comes
along with any method: image corruption, occlusion, pose
variation, and illumination variation. The robust term of [18]
is referred to the ability of the SRC method to overcome most
of these classical problems. These image inconveniences may
affect the representation to deviate from the linear model at
equations (1) to (3). The modification of equation due to this
occlusion or corruption is as follow:

γ = Φy + e = ΦAx+ e (10)

γ = ℵx+ e (11)

e is an unknown vector with nonzero values related to the
corrupted pixels in the observation of γ. The errors e may
be significant in magnitude and hence is cannot be neglected.
However, like the vector x, in the most cases, e are sparse,
while occlusion and corruption generally affect only a fraction
of ρ < 1 of the image pixels. Hence, the problem of face
occlusion can be solved by the same as sparse representation
x by solving a combined �1-minimization problem:

x̂1 = min
x,e

||x+ e||�1 = min
x

||x||�1 ∈ Rmx(m+n) (12)

s.t ||ΦAx− γ||2 ≤ ε (13)

or s.t ||ℵχ− γ||2 ≤ ε (14)

General algorithm of RP-SRC is derived as follow:

Algorithm 1 Algorithm for RP-SRC
Input: a matrix of training samples

A = [A1, A2, ..., Ak] ∈ Rmxn for k classes.
a test sample γ ∈ Rm (and optional error tolerance ε > 0)

Output: class (γ) = argmin ri(γ
x

)

Normalize the column of A to have unit �2-norm
Solve the �1-minimization problem:
x̂1 = argmin ||x||1

x
s.t ΦAx = γ

(Or alternatively, solve
x̂1 = argmin ||x||1

x
s.t ||ΦAx− γ||2 ≤ ε

Compute the residuals
ri(γ) = ||γ −ΦAαi(x̂1)||2 for i = 1, 2, ..., n

It was observed in [18] [27] that this optimization performs
well in correcting occlusion and corruption. For block oc-
clusions that covering up to 20% of the face and random
corruptions affecting less than 70% of the image pixels the
method can recognize well without error. However, it was
also observed, the matrix χ as equation (12) in classical SRC
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may have in-homogeneous properties that violate the classical
conditions for the incoherence criteria and the RIP.

The SRC root problem that also applied to RP-SRC is
to find the solution of linear equations by less dimension
(d � n). There are several well-known methods to solve the
classical problems: regular linear programming, convex prob-
lem optimization, Orthogonal Matching Pursuit (OMP), and
Least Absolute Shrinkage and Selection Operator (LASSO)
methods. In this research we used the LASSO algorithm
because this method shrinks the regression coefficient of the
predictor variable that has a high correlation to exactly zero
or close to zero.

In the simulation we compared the performance of RP-
SRC with dimensional reduction using random projection to
the classical down-scale method. Two parameters are observed
which are time computation and recognition rate as function of
reduction factors and distribution type. The block simulation
diagram depicted in Figure 2.

Train Set A

Dimensionality
Reduction

Train Set ℵ

�1 minimization of x

Compute the residuals

Test Sample y

Dimensionality
Reduction

Test Sample γ

Identity of γ class

Fig. 2. Simulation Diagram

III. SIMULATION AND RESULT

This simulation utilizes the most famous face recognition
library, which is the AT&T image library. This library con-
tains 400 training images of 40 classes or subjects and 200
samples from the same 40 subjects. The images were taken
at different periods, with different lighting, facial expressions
(open / closed eyes, smiling / not smiling), and facial details
(glasses / no glasses) depicted in Figure 3. The subjects were
photographed in an upright, frontal posture against a black,
uniform backdrop (with tolerance for some side movement)
[28].

Fig. 3. AT&T Dataset [28]

The images data of subjects or classes will be stored
as training samples after being projected or dimensionality
reduced and will be used to identify testing samples. The
identification of the training samples is based on solving �1-
minimisation of SRC equation (3) to (7) or equation (10) to
(14). The simulation of performance result will be compare
accordingly.

The simulation is performed by changing the sample di-
mension reduction factor ranging from ρ equals to 1 to 256
times dimensionality reduction. The parameters to be observed
are the processing time and the FR performance, which is
recognition rate. The simulation of processing time in Table II
shows that the processing time is decreasing persistently along
with reduction factor ρ increase from 1 to 256, this is applied
to both random projection and down-scaled procedures. Figure
4 shows the dimensionality reduction also reduce the compu-
tation time. The results of this simulation are obtained from
running on the computer with 2.5 GHz Dual-Core Intel Core
i5 and memory 8 GB 1600 MHz DDR3.

The time constraint result will be helpful for consideration
of the application of the size of the dimensionality reduction.
Application of recognition process will depend on how hu-
man expectation on the process. For example, in real-time
electronic transactions, the process under 2 seconds will be
acceptable. While for crime identification, there will be no
time constraint but accuracy. In contrast, the smaller size of
pixels will be preferred for the actual time application and
massive implementation. Figure 4 depicted simulation of the
time constraint for those 3 (three) simulations. The simulation
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TABLE I
DIMENSIONALITY REDUCTION VS PROCESSING TIME (S)

Reduction Processing Time (s)
Factor (ρ) Downscale Random Gaussian Random Uniform

1 696 603 451
2 210 145 125
4 89 72 63
8 40 41 31
16 18 16 13
32 10 11 7
64 8 7 5
128 7 5 5
256 5 4 4
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Fig. 4. Processing Time Constraint of Dimension Factor

is performed for 200 test samples. Average per test sample will
be under 2 seconds when the reduction factor ρ more than 2.

TABLE II
DIMENSIONALITY REDUCTION VS MAX. RECOGNITION RATE (%)

Reduction Maximum Recognition Rate (%)
Factor (ρ) Downscale Random Gaussian Random Uniform

1 90 91 93
2 90 91 94
4 90 91 94
8 90 90 94
16 88 90 94
32 88 90 94
64 83 84 92
128 76 79 89
256 68 71 77

The recognition rate of linear down-scaled SRC is decrease
linearly along with the dimension reduction from about 90%
down to 68%. The result of recognition rate on random sensing
matrix Φ for both Gaussian and Uniform distribution depends
on the random matrices generated at the time. The accuracy
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Fig. 5. Maximum Recognition Rate of RP-SRC and Downscaled SRC

of random projection is ranged from 71% to maximum 94%
most. The simulation showed that for random matrix Φ
could result in maximum 94% accuracy performance while
the dimension is reduce from ρ equals to 2 to 64 times
dimensionality reduction and then the accuracy performance
go down significantly after.

This result apply to both Gaussian and Uniform distribution
sensing matrix Φ, and this means in certain lower dimension
the RP-SRC could result a better performance from the
common linear down-scaled dimensionality reduction. This
happens most probable because of in certain optimum di-
mension the certain best random sensing matrix the sparsity
enhancement happens and the degeneration of dimensionality
reduction is overcompensate by random sensing matrix Φ.
This happened randomly but certain best random sensing
matrix Φ can be sought and stored. Further investigations must
be performed and must be test for other data sets.

The result of dimensionality reduction by Python down-
scaled function is permanently fixed due to deterministic prop-
erty and non adaptive process. While the random projection
result for best recognition performance is obtained iteratively.
The best random sensing matrix Φ is sought to have the best
performance result by iteration and the best performance result
will store the best matrix Φ. These iterative procedures is
performed for both Gaussian and Uniform random distribution
matrix and the result in Figure 5. Hence, the maximum
performance of certain matrix Φ of Gaussian and Uniform
and in certain iteration number. These best random matrices is
found by direct criteria of recognition performance, there are
possibilities to enhance the criteria with other mathematical
approach such as sparseness of �1-minimization solutions,
minimum square error of recognition, and discriminant of
training samples.
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may have in-homogeneous properties that violate the classical
conditions for the incoherence criteria and the RIP.

The SRC root problem that also applied to RP-SRC is
to find the solution of linear equations by less dimension
(d � n). There are several well-known methods to solve the
classical problems: regular linear programming, convex prob-
lem optimization, Orthogonal Matching Pursuit (OMP), and
Least Absolute Shrinkage and Selection Operator (LASSO)
methods. In this research we used the LASSO algorithm
because this method shrinks the regression coefficient of the
predictor variable that has a high correlation to exactly zero
or close to zero.

In the simulation we compared the performance of RP-
SRC with dimensional reduction using random projection to
the classical down-scale method. Two parameters are observed
which are time computation and recognition rate as function of
reduction factors and distribution type. The block simulation
diagram depicted in Figure 2.
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�1 minimization of x
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Reduction
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Fig. 2. Simulation Diagram

III. SIMULATION AND RESULT

This simulation utilizes the most famous face recognition
library, which is the AT&T image library. This library con-
tains 400 training images of 40 classes or subjects and 200
samples from the same 40 subjects. The images were taken
at different periods, with different lighting, facial expressions
(open / closed eyes, smiling / not smiling), and facial details
(glasses / no glasses) depicted in Figure 3. The subjects were
photographed in an upright, frontal posture against a black,
uniform backdrop (with tolerance for some side movement)
[28].

Fig. 3. AT&T Dataset [28]

The images data of subjects or classes will be stored
as training samples after being projected or dimensionality
reduced and will be used to identify testing samples. The
identification of the training samples is based on solving �1-
minimisation of SRC equation (3) to (7) or equation (10) to
(14). The simulation of performance result will be compare
accordingly.

The simulation is performed by changing the sample di-
mension reduction factor ranging from ρ equals to 1 to 256
times dimensionality reduction. The parameters to be observed
are the processing time and the FR performance, which is
recognition rate. The simulation of processing time in Table II
shows that the processing time is decreasing persistently along
with reduction factor ρ increase from 1 to 256, this is applied
to both random projection and down-scaled procedures. Figure
4 shows the dimensionality reduction also reduce the compu-
tation time. The results of this simulation are obtained from
running on the computer with 2.5 GHz Dual-Core Intel Core
i5 and memory 8 GB 1600 MHz DDR3.

The time constraint result will be helpful for consideration
of the application of the size of the dimensionality reduction.
Application of recognition process will depend on how hu-
man expectation on the process. For example, in real-time
electronic transactions, the process under 2 seconds will be
acceptable. While for crime identification, there will be no
time constraint but accuracy. In contrast, the smaller size of
pixels will be preferred for the actual time application and
massive implementation. Figure 4 depicted simulation of the
time constraint for those 3 (three) simulations. The simulation

2021 13th International Conference on Information Technology and Electrical Engineering (ICITEE), Online Virtual Conference

TABLE I
DIMENSIONALITY REDUCTION VS PROCESSING TIME (S)

Reduction Processing Time (s)
Factor (ρ) Downscale Random Gaussian Random Uniform
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is performed for 200 test samples. Average per test sample will
be under 2 seconds when the reduction factor ρ more than 2.

TABLE II
DIMENSIONALITY REDUCTION VS MAX. RECOGNITION RATE (%)

Reduction Maximum Recognition Rate (%)
Factor (ρ) Downscale Random Gaussian Random Uniform

1 90 91 93
2 90 91 94
4 90 91 94
8 90 90 94

16 88 90 94
32 88 90 94
64 83 84 92
128 76 79 89
256 68 71 77

The recognition rate of linear down-scaled SRC is decrease
linearly along with the dimension reduction from about 90%
down to 68%. The result of recognition rate on random sensing
matrix Φ for both Gaussian and Uniform distribution depends
on the random matrices generated at the time. The accuracy
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of random projection is ranged from 71% to maximum 94%
most. The simulation showed that for random matrix Φ
could result in maximum 94% accuracy performance while
the dimension is reduce from ρ equals to 2 to 64 times
dimensionality reduction and then the accuracy performance
go down significantly after.

This result apply to both Gaussian and Uniform distribution
sensing matrix Φ, and this means in certain lower dimension
the RP-SRC could result a better performance from the
common linear down-scaled dimensionality reduction. This
happens most probable because of in certain optimum di-
mension the certain best random sensing matrix the sparsity
enhancement happens and the degeneration of dimensionality
reduction is overcompensate by random sensing matrix Φ.
This happened randomly but certain best random sensing
matrix Φ can be sought and stored. Further investigations must
be performed and must be test for other data sets.

The result of dimensionality reduction by Python down-
scaled function is permanently fixed due to deterministic prop-
erty and non adaptive process. While the random projection
result for best recognition performance is obtained iteratively.
The best random sensing matrix Φ is sought to have the best
performance result by iteration and the best performance result
will store the best matrix Φ. These iterative procedures is
performed for both Gaussian and Uniform random distribution
matrix and the result in Figure 5. Hence, the maximum
performance of certain matrix Φ of Gaussian and Uniform
and in certain iteration number. These best random matrices is
found by direct criteria of recognition performance, there are
possibilities to enhance the criteria with other mathematical
approach such as sparseness of �1-minimization solutions,
minimum square error of recognition, and discriminant of
training samples.
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IV. CONCLUSION

The RP-SRC by added the random projection matrix can
retain the face recognition performance while dimensionality
reduction is significantly applied; hence the computational
cost of SRC based-FR calculation can be reduced notably for
certain suitable application that requires fast response of face
recognition and accept accuracy performance is offered. The
best random matrix must be obtained iteratively in a separate
effort before use in the main algorithm of CS Based-SRC face
recognition application. This best random matrix is dynamic
to the different groups of samples, or any new samples added
into a group can change the best random matrix.
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Abstract— The ambulance response time for trauma incidents
depends on location and traffic conditions. High congestion
noticeably increases the ambulance response time, causing
delays that decrease the victim’s odds for survival. The paper
aims to use a UAV to locate the head of a congestion, such
that upon locating accident, the UAV can send the exact
location of the accident and stream live footage of the scene
so paramedics can be prepared, thus reducing response time.
This is implemented through a video imaging post-processing
via an object detection convolutional neural network,YOLOv4,
and a proprietary MATLAB algorithm.
Index terms: Traffic Accident Indentification, Aerial Surveil-
lance, YoloV4

I. INTRODUCTION

Singapore has a fatality rate of 2.73 per 100,000 citi-
zens from road-related accidents, higher than cities such as
London or Hong Kong [1]. The response from emergency
personnel during an accident is critical; the victim relies
heavily on the arrival of paramedics. In Singapore, the
ambulance response time for trauma incidents depends on
location and traffic conditions. High congestion noticeably
increases the ambulance response time [2], causing delays
that decrease the victim’s odds for survival.

The project aims to use a drone to arrive at the accident
by identifying areas of congestion. The drone will arrive
at the accident autonomously before the emergency person-
nel, especially in heavy traffic congestion. The autonomous
movement is driven by video imaging post-processing via
an object detection convolutional neural network and a
proprietary MATLAB algorithm. The drone can stream live
footage of the accident, which reduces the time spent by
paramedics to evaluate the accident.

A. Literature review

Determining traffic conditions using computer vision has
been studied intensively. However, most of these focus on
stationary image points (surveillance cameras) [3], [4], [5],
[6]. Stationary image points are not recommended since
it requires a huge amount of infrastructure in terms of
surveillance cameras and a stable internet connection to cover
the required areas. As such, implementations are limited
to highway congestion and even then the cameras are far
apart such that accurate representation of the accident is not
possible.

Hence a mobile image point would be ideal to overcome
these limitations. One alternative method is to use UAVs
with image processing capabilities. Some studies have been
conducted using UAVs to detect traffic congestion.

A fixed-wing UAV was used to detect traffic congestion
based on the density of cars in a given area [7]. This is
not ideal as the velocity of the vehicles is not accounted for,
which means that if most of the vehicles in the frame are still
moving at a reasonably fast speed, it will still be flagged as
congested due to the density. Furthermore, the drone is flying
at an altitude of 40 m, this high altitude is needed to cover
a wider area in a single frame so that the density of the cars
can be captured more accurately. However, this comes at the
expense of image quality, which is of paramount importance
for accidents. Another study was done where a CNN was
trained to detect congestion [8]. However, the same issue
applies where the velocity of cars are not accounted for.

Research has also been invested towards algorithms used
to analyse traffic flow through UAV systems, namely through
Road Traffic Monitoring (RTM) systems. Elloumi et al. [9]
proposed a vehicular mobility model for multiple UAVs that
would generate adaptive trajectories that track the resultant
motion of a target group of vehicles, where the trajectories
are guided based on the road flow. Elloumi et al. [9] also
compared stationary based and mobility-based RTM systems
for UAVs, which showed that mobility-based RTM systems
performed better than stationary-based RTM systems in
detecting more congestion events and speeding violations.
However, for the mobility-based model, not much informa-
tion was given in computing the motion of the centroid of the
target group of vehicles. Furthermore, it failed to account for
edge cases that might arise with a single stationary vehicle,
which might be picked up by the UAV as a congestion event,
although it might be just a vehicle parked on the roadside.

Overall, a mobile image point is recommended for traffic
congestion using UAV. When tracking for congestion, there
is a research gap between using velocity thresholds to
detect congestion and computing the density of the cars on
the road. Furthermore, even when velocity thresholds are
included, there is limited research in accounting for edge
cases that result from tracking the velocity of a group of
moving vehicles. This project attempts to show a concrete
implementation of computing vehicular velocities to identify
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